Update app.py
Browse files
app.py
CHANGED
@@ -3,139 +3,195 @@ from typing import List, Optional, Union
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
6 |
-
from dotenv import load_dotenv
|
7 |
-
from pandas import DataFrame
|
8 |
from smolagents import CodeAgent, LiteLLMModel, tool
|
9 |
|
10 |
-
# Load environment variables
|
11 |
-
load_dotenv()
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
def read_csv(filepath: str) -> DataFrame:
|
19 |
-
"""
|
20 |
-
Read a CSV file and return a pandas DataFrame.
|
21 |
-
|
22 |
-
Args:
|
23 |
-
filepath: Path to the CSV file
|
24 |
-
"""
|
25 |
-
return pd.read_csv(filepath)
|
26 |
-
|
27 |
-
@tool
|
28 |
-
def read_excel(filepath: str) -> DataFrame:
|
29 |
-
"""
|
30 |
-
Read an Excel file and return a pandas DataFrame.
|
31 |
-
|
32 |
-
Args:
|
33 |
-
filepath: Path to the Excel file
|
34 |
-
"""
|
35 |
-
return pd.read_excel(filepath)
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
)
|
52 |
-
return agent
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
user_query: str,
|
57 |
-
api_key: str = "",
|
58 |
-
temperature: float = 0.7,
|
59 |
-
history: Optional[List[tuple]] = None
|
60 |
-
) -> tuple:
|
61 |
"""
|
62 |
-
|
63 |
|
64 |
Args:
|
65 |
-
|
66 |
-
|
67 |
-
api_key: Optional API key for GPT-4
|
68 |
-
temperature: Model temperature
|
69 |
-
history: Chat history
|
70 |
-
|
71 |
-
Returns:
|
72 |
-
Tuple of (output, error, new_history)
|
73 |
"""
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
try:
|
78 |
-
#
|
79 |
-
|
80 |
|
81 |
-
#
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
prompt = f"""
|
92 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
User request: {
|
95 |
|
96 |
Please analyze the data and provide:
|
97 |
-
1.
|
98 |
-
2.
|
99 |
-
3. Visualizations
|
100 |
4. Key insights and findings
|
101 |
-
"""
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
# Update history
|
107 |
-
new_history = history or []
|
108 |
-
new_history.append((user_query, result))
|
109 |
|
110 |
-
|
|
|
|
|
111 |
|
112 |
except Exception as e:
|
113 |
-
return
|
114 |
|
115 |
-
# Create Gradio interface
|
116 |
def create_interface():
|
117 |
-
"""Create Gradio interface
|
118 |
|
119 |
-
with gr.Blocks(title="AI
|
120 |
gr.Markdown("""
|
121 |
-
# AI
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
""")
|
124 |
|
125 |
with gr.Row():
|
126 |
with gr.Column():
|
127 |
-
|
128 |
-
label="Upload Data Files",
|
129 |
-
file_types=[".csv", ".xlsx", ".xls"]
|
130 |
-
multiple=True
|
131 |
)
|
132 |
query = gr.Textbox(
|
133 |
label="What would you like to analyze?",
|
134 |
-
placeholder="e.g.,
|
|
|
135 |
)
|
136 |
api_key = gr.Textbox(
|
137 |
-
label="API Key (
|
138 |
-
placeholder="Your
|
139 |
type="password"
|
140 |
)
|
141 |
temperature = gr.Slider(
|
@@ -145,39 +201,29 @@ def create_interface():
|
|
145 |
value=0.7,
|
146 |
step=0.1
|
147 |
)
|
148 |
-
|
149 |
-
|
150 |
with gr.Column():
|
151 |
output = gr.Markdown(label="Output")
|
152 |
-
error = gr.Markdown(label="Errors")
|
153 |
-
|
154 |
-
# Hidden state for chat history
|
155 |
-
history = gr.State([])
|
156 |
|
157 |
# Handle submissions
|
158 |
-
|
159 |
-
|
160 |
-
inputs=[
|
161 |
-
outputs=
|
162 |
)
|
163 |
|
164 |
-
#
|
165 |
gr.Examples(
|
166 |
examples=[
|
167 |
-
[
|
168 |
-
|
169 |
-
|
170 |
-
],
|
171 |
-
[
|
172 |
-
|
173 |
-
"Calculate summary statistics and identify any outliers in the numerical columns",
|
174 |
-
],
|
175 |
-
[
|
176 |
-
None,
|
177 |
-
"Perform clustering analysis on the data and visualize the clusters",
|
178 |
-
],
|
179 |
],
|
180 |
-
inputs=[
|
181 |
)
|
182 |
|
183 |
return interface
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
|
|
|
|
6 |
from smolagents import CodeAgent, LiteLLMModel, tool
|
7 |
|
|
|
|
|
8 |
|
9 |
+
# Tool definitions to showcase smolagents capabilities
|
10 |
+
@tool
|
11 |
+
def search_web(query: str) -> str:
|
12 |
+
"""Simulate web search (for demo purposes)"""
|
13 |
+
return f"Simulated web search results for: {query}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
@tool
|
16 |
+
def analyze_dataframe(df: pd.DataFrame, analysis_type: str) -> str:
|
17 |
+
"""
|
18 |
+
Analyze a pandas DataFrame based on specified analysis type.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
df: DataFrame to analyze
|
22 |
+
analysis_type: Type of analysis to perform
|
23 |
+
"""
|
24 |
+
if analysis_type == "summary":
|
25 |
+
return str(df.describe())
|
26 |
+
elif analysis_type == "info":
|
27 |
+
return str(df.info())
|
28 |
+
return "Unknown analysis type"
|
|
|
|
|
29 |
|
30 |
+
@tool
|
31 |
+
def plot_data(df: pd.DataFrame, plot_type: str) -> None:
|
|
|
|
|
|
|
|
|
|
|
32 |
"""
|
33 |
+
Create plots from DataFrame.
|
34 |
|
35 |
Args:
|
36 |
+
df: DataFrame to plot
|
37 |
+
plot_type: Type of plot to create
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
"""
|
39 |
+
import matplotlib.pyplot as plt
|
40 |
+
import seaborn as sns
|
41 |
+
|
42 |
+
if plot_type == "correlation":
|
43 |
+
plt.figure(figsize=(10, 8))
|
44 |
+
sns.heatmap(df.corr(), annot=True)
|
45 |
+
plt.title("Correlation Heatmap")
|
46 |
+
elif plot_type == "distribution":
|
47 |
+
df.hist(figsize=(15, 10))
|
48 |
+
plt.tight_layout()
|
49 |
+
|
50 |
+
def process_files(files: List[gr.File]) -> Optional[pd.DataFrame]:
|
51 |
+
"""Process uploaded files into a DataFrame."""
|
52 |
+
if not files:
|
53 |
+
return None
|
54 |
+
|
55 |
+
dfs = []
|
56 |
+
for file in files:
|
57 |
+
try:
|
58 |
+
if file.name.endswith('.csv'):
|
59 |
+
df = pd.read_csv(file.name)
|
60 |
+
elif file.name.endswith(('.xlsx', '.xls')):
|
61 |
+
df = pd.read_excel(file.name)
|
62 |
+
else:
|
63 |
+
continue
|
64 |
+
dfs.append(df)
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Error reading {file.name}: {str(e)}")
|
67 |
+
|
68 |
+
if not dfs:
|
69 |
+
return None
|
70 |
+
|
71 |
+
return pd.concat(dfs) if len(dfs) > 1 else dfs[0]
|
72 |
+
|
73 |
+
def analyze_data(
|
74 |
+
files: List[gr.File],
|
75 |
+
query: str,
|
76 |
+
api_key: str,
|
77 |
+
temperature: float = 0.7,
|
78 |
+
) -> str:
|
79 |
+
"""Process user request and generate analysis using smolagents."""
|
80 |
+
|
81 |
+
if not api_key:
|
82 |
+
return "Error: Please provide an API key."
|
83 |
+
|
84 |
+
if not files:
|
85 |
+
return "Error: Please upload at least one file."
|
86 |
|
87 |
try:
|
88 |
+
# Set up the environment
|
89 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
90 |
|
91 |
+
# Create model and agent
|
92 |
+
model = LiteLLMModel(
|
93 |
+
model_id="gpt-4o-mini",
|
94 |
+
temperature=temperature
|
95 |
+
)
|
96 |
+
|
97 |
+
# Create agent with various tools to showcase capabilities
|
98 |
+
agent = CodeAgent(
|
99 |
+
tools=[search_web, analyze_dataframe, plot_data],
|
100 |
+
model=model,
|
101 |
+
additional_authorized_imports=[
|
102 |
+
"pandas",
|
103 |
+
"numpy",
|
104 |
+
"matplotlib",
|
105 |
+
"seaborn",
|
106 |
+
"plotly",
|
107 |
+
"sklearn",
|
108 |
+
"scipy"
|
109 |
+
],
|
110 |
+
max_steps=5,
|
111 |
+
verbosity_level=1
|
112 |
+
)
|
113 |
+
|
114 |
+
# Process uploaded files
|
115 |
+
df = process_files(files)
|
116 |
+
if df is None:
|
117 |
+
return "Error: Could not process uploaded files."
|
118 |
+
|
119 |
+
# Build context
|
120 |
+
file_info = "\n".join([
|
121 |
+
"Uploaded files:",
|
122 |
+
*[f"- {f.name}" for f in files],
|
123 |
+
f"\nDataFrame Shape: {df.shape}",
|
124 |
+
f"Columns: {', '.join(df.columns)}",
|
125 |
+
"\nColumn Types:",
|
126 |
+
*[f"- {col}: {dtype}" for col, dtype in df.dtypes.items()]
|
127 |
+
])
|
128 |
+
|
129 |
+
# Build prompt
|
130 |
prompt = f"""
|
131 |
+
{file_info}
|
132 |
+
|
133 |
+
The data has been loaded into a pandas DataFrame called 'df'.
|
134 |
+
Available tools:
|
135 |
+
- search_web: Search for relevant information
|
136 |
+
- analyze_dataframe: Perform basic DataFrame analysis
|
137 |
+
- plot_data: Create various plots
|
138 |
+
|
139 |
+
Additional capabilities:
|
140 |
+
- Full pandas, numpy, matplotlib, seaborn access
|
141 |
+
- Machine learning with sklearn
|
142 |
+
- Statistical analysis with scipy
|
143 |
|
144 |
+
User request: {query}
|
145 |
|
146 |
Please analyze the data and provide:
|
147 |
+
1. A clear explanation of your approach
|
148 |
+
2. Code for the analysis
|
149 |
+
3. Visualizations where relevant
|
150 |
4. Key insights and findings
|
|
|
151 |
|
152 |
+
Make use of the available tools and libraries to provide comprehensive analysis.
|
153 |
+
"""
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
# Run analysis
|
156 |
+
result = agent.run(prompt, additional_args={"df": df})
|
157 |
+
return result
|
158 |
|
159 |
except Exception as e:
|
160 |
+
return f"Error occurred: {str(e)}"
|
161 |
|
|
|
162 |
def create_interface():
|
163 |
+
"""Create Gradio interface."""
|
164 |
|
165 |
+
with gr.Blocks(title="AI Agent Testing Interface") as interface:
|
166 |
gr.Markdown("""
|
167 |
+
# AI Agent Testing Interface
|
168 |
+
|
169 |
+
Test the capabilities of AI agents using smolagents library. Upload data files and ask questions in natural language.
|
170 |
+
|
171 |
+
**Features:**
|
172 |
+
- Data analysis and visualization
|
173 |
+
- Machine learning capabilities
|
174 |
+
- Web search simulation
|
175 |
+
- Statistical analysis
|
176 |
+
- Custom tool integration
|
177 |
+
|
178 |
+
**Note**: Requires your own API key for GPT-4.
|
179 |
""")
|
180 |
|
181 |
with gr.Row():
|
182 |
with gr.Column():
|
183 |
+
file = gr.File(
|
184 |
+
label="Upload Data Files (CSV/Excel)",
|
185 |
+
file_types=[".csv", ".xlsx", ".xls"]
|
|
|
186 |
)
|
187 |
query = gr.Textbox(
|
188 |
label="What would you like to analyze?",
|
189 |
+
placeholder="e.g., Analyze the relationships between variables and create visualizations",
|
190 |
+
lines=3
|
191 |
)
|
192 |
api_key = gr.Textbox(
|
193 |
+
label="API Key (Required)",
|
194 |
+
placeholder="Your API key",
|
195 |
type="password"
|
196 |
)
|
197 |
temperature = gr.Slider(
|
|
|
201 |
value=0.7,
|
202 |
step=0.1
|
203 |
)
|
204 |
+
analyze_btn = gr.Button("Analyze")
|
205 |
+
|
206 |
with gr.Column():
|
207 |
output = gr.Markdown(label="Output")
|
|
|
|
|
|
|
|
|
208 |
|
209 |
# Handle submissions
|
210 |
+
analyze_btn.click(
|
211 |
+
analyze_data,
|
212 |
+
inputs=[file, query, api_key, temperature],
|
213 |
+
outputs=output
|
214 |
)
|
215 |
|
216 |
+
# Example queries
|
217 |
gr.Examples(
|
218 |
examples=[
|
219 |
+
[None, "Perform comprehensive exploratory data analysis including distributions, correlations, and key statistics"],
|
220 |
+
[None, "Create visualizations showing relationships between numeric variables"],
|
221 |
+
[None, "Identify and analyze outliers in the dataset"],
|
222 |
+
[None, "Perform clustering analysis and visualize the results"],
|
223 |
+
[None, "Calculate summary statistics and create box plots for numeric columns"],
|
224 |
+
[None, "Analyze trends and patterns in the data over time"],
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
],
|
226 |
+
inputs=[file, query]
|
227 |
)
|
228 |
|
229 |
return interface
|