File size: 15,540 Bytes
3c478c7
 
 
 
f31fea1
 
3c478c7
 
 
 
 
 
 
 
 
 
7f68f9f
 
3c478c7
 
 
 
 
 
 
 
 
2103a11
2820ed5
 
 
2103a11
 
 
 
 
 
b0fc80c
 
 
 
 
 
d23c70e
 
 
 
 
2103a11
8142abe
6caec96
638e9bd
 
 
 
 
 
 
 
 
 
 
6caec96
3c478c7
 
7a48d5e
3c478c7
74d31de
3c478c7
 
7a48d5e
3c478c7
74d31de
3c478c7
 
7a48d5e
3c478c7
74d31de
3c478c7
 
7a48d5e
3c478c7
74d31de
3c478c7
 
7a48d5e
3c478c7
74d31de
3c478c7
 
 
e982671
 
 
3c478c7
 
 
 
 
 
 
 
 
638e9bd
3c478c7
2103a11
 
 
 
 
 
638e9bd
3c478c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cebeee5
3c478c7
 
 
 
9233e34
3c478c7
 
e5ce742
83a14ab
 
7a0d3bf
3f65c64
638e9bd
 
 
cebeee5
638e9bd
cebeee5
e5ce742
cebeee5
e5ce742
3c478c7
cebeee5
3c478c7
 
 
 
 
 
 
7393cd1
7f9264a
638e9bd
7f9264a
3c478c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02dd1a2
3c478c7
02dd1a2
 
 
3c478c7
 
 
 
83a14ab
 
e5ce742
02dd1a2
 
 
 
 
 
 
638e9bd
02dd1a2
 
3be1481
 
e5ce742
 
3c478c7
e5ce742
3c478c7
e5ce742
3c478c7
e5ce742
3c478c7
638e9bd
83a14ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c478c7
4c4fe86
 
 
 
638e9bd
4c4fe86
 
638e9bd
4c4fe86
 
 
75db840
638e9bd
 
 
4b1f946
 
75db840
 
 
 
4b1f946
 
75db840
638e9bd
75db840
009cd74
 
 
75db840
009cd74
 
f31fea1
cebeee5
 
75db840
 
f31fea1
009cd74
 
 
 
 
 
 
4b1f946
3c478c7
 
3fe2bc3
103916a
3c478c7
61cc380
8899d2c
 
b120adf
40567ae
a3a931f
 
676493e
360e6fe
b1d5386
c72fcf9
8899d2c
638e9bd
c72fcf9
638e9bd
 
 
c72fcf9
638e9bd
 
 
3c478c7
1e32f27
78fcc7c
401b6e4
78fcc7c
4ac1e56
 
4c4fe86
75db840
693b619
 
aa00ff2
75db840
 
aa00ff2
75db840
aa00ff2
43d77da
aa00ff2
d8b6e42
 
 
 
cebeee5
d8b6e42
 
 
cebeee5
d8b6e42
 
fd60739
19ff41c
d8b6e42
 
cebeee5
d8b6e42
 
 
 
cebeee5
d8b6e42
 
cebeee5
 
 
 
 
d23c70e
db08613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b0c5d4
 
 
 
cebeee5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import os
import json
import requests

import numpy as np

import gradio as gr
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from huggingface_hub.repocard import metadata_load
from apscheduler.schedulers.background import BackgroundScheduler

from tqdm.contrib.concurrent import thread_map

from utils import make_clickable_model, make_clickable_user

from typing import List  # Add this import statement

DATASET_REPO_URL = (
    "https://huggingface.co/datasets/hivex-research/hivex-leaderboard-data"
)
DATASET_REPO_ID = "hivex-research/hivex-leaderboard-data"
HF_TOKEN = os.environ.get("HF_TOKEN")

block = gr.Blocks()
api = HfApi(token=HF_TOKEN)


# .tab-buttons button {
#     font-size: 20px;
# }

custom_css = """
/* Full width space */
.gradio-container {
  max-width: 95%!important;
}

.gr-dataframe table {
    width: auto;
}

.gr-dataframe td, .gr-dataframe th {
    white-space: nowrap;
    text-overflow: ellipsis;
    overflow: hidden;
    width: 1%;
}
"""

# Pattern: 0 Default, 1 Grid, 2 Chain, 3 Circle, 4 Square, 5 Cross, 6 Two_Rows, 7 Field, 8 Random
pattern_map = {
    0: "0: Default",
    1: "1: Grid",
    2: "2: Chain",
    3: "3: Circle",
    4: "4: Square",
    5: "5: Cross",
    6: "6: Two Rows",
    7: "7: Field",
    8: "8: Random",
}

hivex_envs = [
    {
        "title": "Wind Farm Control",
        "hivex_env": "hivex-wind-farm-control",
        "task_count": 2,
    },
    {
        "title": "Wildfire Resource Management",
        "hivex_env": "hivex-wildfire-resource-management",
        "task_count": 3,
    },
    {
        "title": "Drone-Based Reforestation",
        "hivex_env": "hivex-drone-based-reforestation",
        "task_count": 7,
    },
    {
        "title": "Ocean Plastic Collection",
        "hivex_env": "hivex-ocean-plastic-collection",
        "task_count": 4,
    },
    {
        "title": "Aerial Wildfire Suppression",
        "hivex_env": "hivex-aerial-wildfire-suppression",
        "task_count": 9,
    },
]

verified_users = ["hivex-research"]

verified_models = [{"user": "hivex-research", "model": "my_model"}]

def restart():
    print("RESTART")
    api.restart_space(repo_id="hivex-research/hivex-leaderboard")


def download_leaderboard_dataset():
    path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
    return path


def get_total_models():
    total_models = 0
    for hivex_env in hivex_envs:
        model_ids = get_model_ids(hivex_env["hivex_env"])
        total_models += len(model_ids)
    return total_models


def get_model_ids(hivex_env):
    api = HfApi()
    models = api.list_models(filter=hivex_env)
    model_ids = [x.modelId for x in models]
    return model_ids


def get_metadata(model_id):
    try:
        readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
        return metadata_load(readme_path)
    except requests.exceptions.HTTPError:
        # 404 README.md not found
        return None


def update_leaderboard_dataset_parallel(hivex_env, path):
    # Get model ids associated with hivex_env
    model_ids = get_model_ids(hivex_env)

    def process_model(model_id):
        meta = get_metadata(model_id)
        # LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
        if meta is None:
            return None
        user_id = model_id.split("/")[0]
        row = {}
        row["Verified"] = "βœ…" if user_id in verified_users else "❌"
        row["User"] = user_id
        row["Model"] = model_id
        results = meta["model-index"][0]["results"][0]
        row["Task-ID"] = results["task"]["task-id"]
        row["Task"] = results["task"]["name"]
        if "pattern-id" in results["task"] or "difficulty-id" in results["task"]:
            key = "Pattern" if "pattern-id" in results["task"] else "Terrain Elevation Levels"
            row[key] = (
                pattern_map[results["task"]["pattern-id"]]
                if "pattern-id" in results["task"]
                else results["task"]["difficulty-id"]
            )

        results_metrics = results["metrics"]

        for result in results_metrics:
            row[result["name"]] = float(result["value"].split("+/-")[0].strip())

        return row

    data = list(thread_map(process_model, model_ids, desc="Processing models"))

    # Filter out None results (models with no metadata)
    data = [row for row in data if row is not None]

    # ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
    ranked_dataframe = pd.DataFrame.from_records(data)

    new_history = ranked_dataframe
    file_path = path + "/" + hivex_env + ".csv"
    new_history.to_csv(file_path, index=False)

    return ranked_dataframe


def run_update_dataset():
    path_ = download_leaderboard_dataset()
    for i in range(0, len(hivex_envs)):
        hivex_env = hivex_envs[i]
        update_leaderboard_dataset_parallel(hivex_env["hivex_env"], path_)

    api.upload_folder(
        folder_path=path_,
        repo_id="hivex-research/hivex-leaderboard-data",
        repo_type="dataset",
        commit_message="Update dataset",
    )


def get_data(rl_env, task_id, path) -> pd.DataFrame:
    """
    Get data from rl_env, filter by the given task_id, and drop the Task-ID column.
    Also drops any columns that have no data (all values are NaN) or all values are 0.0.
    :return: filtered data as a pandas DataFrame without the Task-ID column
    """
    csv_path = path + "/" + rl_env + ".csv"
    data = pd.read_csv(csv_path)

    # Filter the data to only include rows where the "Task-ID" column matches the given task_id
    filtered_data = data[data["Task-ID"] == task_id]

    # Drop the "Task-ID" column
    filtered_data = filtered_data.drop(columns=["Task-ID"])

    # Drop the "Task" column
    filtered_data = filtered_data.drop(columns=["Task"])

    # Drop columns that have no data (all values are NaN)
    filtered_data = filtered_data.dropna(axis=1, how="all")

    # Drop columns where all values are 0.0
    filtered_data = filtered_data.loc[:, (filtered_data != 0.0).any(axis=0)]

    # Convert User and Model columns to clickable links
    for index, row in filtered_data.iterrows():
        user_id = row["User"]
        filtered_data.loc[index, "User"] = make_clickable_user(user_id)
        model_id = row["Model"]
        filtered_data.loc[index, "Model"] = make_clickable_model(model_id)

    return filtered_data


def get_task(rl_env, task_id, path) -> str:
    """
    Get the task name from the leaderboard dataset based on the rl_env and task_id.
    :return: The task name as a string
    """
    csv_path = path + "/" + rl_env + ".csv"
    data = pd.read_csv(csv_path)

    # Filter the data to find the row with the matching task_id
    task_row = data[data["Task-ID"] == task_id]

    # Check if the task exists and return the task name
    if not task_row.empty:
        task_name = task_row.iloc[0]["Task"]
        return task_name
    else:
        return "Task not found"


def convert_to_title_case(text: str) -> str:
    # Replace underscores with spaces
    text = text.replace("_", " ")

    # Convert each word to title case (capitalize the first letter)
    title_case_text = text.title()

    return title_case_text


def get_elevation_pattern_ids_and_key(rl_env, path):
    csv_path = path + "/" + rl_env + ".csv"
    data = pd.read_csv(csv_path)

    if "Pattern" in data.columns:
        key = "Pattern"
        elevation_pattern_ids = sorted(data[key].unique())
    elif "Terrain Elevation Levels" in data.columns:
        key = "Terrain Elevation Levels"
        elevation_pattern_ids = sorted(data[key].unique())
    else:
        key = None
        elevation_pattern_ids = []

    return key, elevation_pattern_ids

def filter_data(rl_env, task_id, selected_values, path):
    """
    Filters the data based on the selected elevation/pattern values.
    """
    data = get_data(rl_env, task_id, path)

    # If there are selected values, filter the DataFrame
    if selected_values:
        filter_column = "Pattern" if "Pattern" in data.columns else "Terrain Elevation Levels"
        if filter_column == "Terrain Elevation Levels":
            selected_values = [np.int64(sv) for sv in selected_values] 
        data = data[data[filter_column].isin(selected_values)]

    return data

def update_filtered_data(selected_values, rl_env, task_id, path):
    filtered_data = filter_data(rl_env, task_id, selected_values, path)
    return filtered_data

run_update_dataset()

block = gr.Blocks(css=custom_css)  # Attach the custom CSS here
with block:
    with gr.Row(elem_id="header-row"):
        # TITLE IMAGE
        gr.HTML(
            """
            <div style="width: 50%; margin: 0 auto; text-align: center;">
                <img
                  src="https://huggingface.co/spaces/hivex-research/hivex-leaderboard/resolve/main/hivex_logo.png"
                  alt="hivex logo"
                  style="width: 100px; display: inline-block; border-radius:20px;"
                />
                <h1 style="font-weight: bold;">HIVEX Leaderboard</h1>
            </div>
            """
        )
    with gr.Row(elem_id="header-row"):
        gr.HTML(
            f"<p style='text-align: center;'>Total models: {get_total_models()}</p>"
        )
    with gr.Row(elem_id="header-row"):
        gr.HTML(
            f"<p style='text-align: center;'>Get started πŸš€ on our <a href='https://github.com/hivex-research/hivex'>GitHub repository</a>!</p>"
        )

    path_ = download_leaderboard_dataset()

    # ENVIRONMENT TABS
    with gr.Tabs() as tabs:
        for env_index in range(0, len(hivex_envs)):
            hivex_env = hivex_envs[env_index]
            with gr.Tab(f"{hivex_env['title']}") as env_tabs:
                dp_key, elevation_pattern_ids = get_elevation_pattern_ids_and_key(
                    hivex_env["hivex_env"], path_
                )

                # Check if dp_key is defined and elevation_pattern_ids is not empty
                if dp_key is not None and len(elevation_pattern_ids) > 0:
                    selected_checkboxes = gr.CheckboxGroup(
                        [str(dp_id) for dp_id in elevation_pattern_ids], label=dp_key
                    )
                
                for task_id in range(0, hivex_env["task_count"]):                        
                    task_title = convert_to_title_case(
                        get_task(hivex_env["hivex_env"], task_id, path_)
                    )
                    with gr.TabItem(f"Task {task_id}: {task_title}"):

                        # Display initial data
                        data = get_data(hivex_env["hivex_env"], task_id, path_)
                        row_count = len(data)

                        gr_dataframe = gr.DataFrame(
                            value=data,
                            headers=["Verified", "User", "Model"],
                            datatype=["html", "markdown", "markdown"],
                            row_count=(row_count, "fixed"),
                        )

                        # Use gr.State to hold environment and task information
                        rl_env_state = gr.State(value=hivex_env["hivex_env"])
                        task_id_state = gr.State(value=task_id)
                        path_state = gr.State(value=path_)

                        # Add a callback to update the DataFrame when checkboxes are changed
                        if selected_checkboxes:
                            selected_checkboxes.change(
                                fn=update_filtered_data,
                                inputs=[selected_checkboxes, rl_env_state, task_id_state, path_state],
                                outputs=gr_dataframe,
                            )

        with gr.Tab("Submit Model ✨") as submit_tab:
            with gr.Row(elem_id="header-row"):
                with gr.Column():
                    gr.HTML("<h1>Submit your own Results to the <a href='https://huggingface.co/spaces/hivex-research/hivex-leaderboard' target='_blank'>HIVEX Leaderboard</a> on Huggingface πŸ€—</h1>")
                    
                    gr.HTML("<p>You can follow the steps in the <a href='https://github.com/hivex-research/hivex-results?tab=readme-ov-file#submit-your-own-results-to-the-hivex-leaderboard-on-huggingface-' target='_blank'>hivex-results repository</a> or stay here and follow these steps:</p>")
                    
                    gr.HTML("<div style='padding-left: 20px; line-height: 1.6;'>\
                                <p><strong>1.</strong> Install all dependencies as described in the <a href='https://github.com/hivex-research/hivex/tree/main' target='_blank'>HIVEX repository README</a>.</p>\
                                <p><strong>2.</strong> Run the Train and Test Pipeline in the <a href='https://github.com/hivex-research/hivex/tree/main' target='_blank'>HIVEX repository</a>, either using <a href='https://github.com/hivex-research/hivex/tree/main?tab=readme-ov-file#-reproducing-paper-results' target='_blank'>ML-Agents</a> or with your <a href='https://github.com/hivex-research/hivex/tree/main?tab=readme-ov-file#-additional-environments-and-training-frameworks' target='_blank'>favorite framework</a>.</p>\
                                <p><strong>3.</strong> Clone the <a href='https://github.com/hivex-research/hivex-results/tree/master' target='_blank'>hivex-results repository</a>.</p>\
                                <p><strong>4.</strong> In your local hivex-results repository, add your results to the respective environment/train and environment/test folders. We have provided a <code>train_dummy_folder</code> and <code>test_dummy_folder</code> with results for training and testing on the Wind Farm Control environment.</p>\
                                <p><strong>5.</strong> Run <code>find_best_models.py</code>. This script generates data from your results.</p>\
                                <code>python tools/huggingface/find_best_models.py</code>\
                                <p><strong>6.</strong> Run <code>generate_hf_yaml.py</code>. Uncomment the environment data parser you need for your data. For example, for our dummy data, we need <code>generate_yaml_WFC(data['WindFarmControl'], key)</code>. This script takes the data generated in the previous step and turns it into folders including the checkpoint etc. of your training run and a <code>README.md</code>, which serves as the model card including important meta-data that is needed for the automatic fetching of the leaderboard of your model.</p>\
                                <code>python tools/huggingface/generate_hf_yaml.py</code>\
                                <p><strong>7.</strong> Finally, upload the content of the generated folder(s) to Huggingface πŸ€— as a new model.</p>\
                                <p><strong>8.</strong> Every 24 hours, the <a href='https://huggingface.co/spaces/hivex-research/hivex-leaderboard' target='_blank'>HIVEX Leaderboard</a> is fetching new models. We will review your model as soon as possible and add it to the verified list of models as soon as possible. If you have any questions, please feel free to reach out to [email protected].</p>\
                             </div>")
                    
                    gr.HTML("<h2>Congratulations, you did it πŸš€!</h2>")
        
        
scheduler = BackgroundScheduler()
scheduler.add_job(restart, "interval", seconds=86400)
scheduler.start()

block.launch()