- app.py +213 -0
- requirements.txt +5 -0
- utils.py +14 -0
app.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import requests
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import pandas as pd
|
7 |
+
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
|
8 |
+
from huggingface_hub.repocard import metadata_load
|
9 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
10 |
+
|
11 |
+
from tqdm.contrib.concurrent import thread_map
|
12 |
+
|
13 |
+
from utils import make_clickable_model, make_clickable_user
|
14 |
+
|
15 |
+
DATASET_REPO_URL = (
|
16 |
+
"https://huggingface.co/datasets/hivex-research/hivex-leaderboard-data"
|
17 |
+
)
|
18 |
+
DATASET_REPO_ID = "hivex-research/hivex-leaderboard-data"
|
19 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
20 |
+
|
21 |
+
block = gr.Blocks()
|
22 |
+
api = HfApi(token=HF_TOKEN)
|
23 |
+
|
24 |
+
hivex_envs = [
|
25 |
+
{
|
26 |
+
"hivex_env": "hivex-wind-farm-control",
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"hivex_env": "hivex-wildfire-resource-management",
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"hivex_env": "hivex-drone-based-reforestation",
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"hivex_env": "hivex-ocean-plastic-collection",
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"hivex_env": "hivex-aerial-wildfire-suppression",
|
39 |
+
},
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
def restart():
|
44 |
+
print("RESTART")
|
45 |
+
api.restart_space(repo_id="hivex-research/hivex-leaderboard")
|
46 |
+
|
47 |
+
|
48 |
+
def download_leaderboard_dataset():
|
49 |
+
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
|
50 |
+
return path
|
51 |
+
|
52 |
+
|
53 |
+
def get_model_ids(hivex_env):
|
54 |
+
api = HfApi()
|
55 |
+
models = api.list_models(filter=hivex_env)
|
56 |
+
model_ids = [x.modelId for x in models]
|
57 |
+
return model_ids
|
58 |
+
|
59 |
+
|
60 |
+
def get_metadata(model_id):
|
61 |
+
try:
|
62 |
+
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
|
63 |
+
return metadata_load(readme_path)
|
64 |
+
except requests.exceptions.HTTPError:
|
65 |
+
# 404 README.md not found
|
66 |
+
return None
|
67 |
+
|
68 |
+
|
69 |
+
# def parse_metrics_accuracy(meta):
|
70 |
+
# if "model-index" not in meta:
|
71 |
+
# return None
|
72 |
+
# result = meta["model-index"][0]["results"]
|
73 |
+
# metrics = result[0]["metrics"]
|
74 |
+
# accuracy = metrics[0]["value"]
|
75 |
+
# return accuracy
|
76 |
+
|
77 |
+
|
78 |
+
# def parse_rewards(accuracy):
|
79 |
+
# default_std = -1000
|
80 |
+
# default_reward = -1000
|
81 |
+
# if accuracy != None:
|
82 |
+
# accuracy = str(accuracy)
|
83 |
+
# parsed = accuracy.split("+/-")
|
84 |
+
# if len(parsed) > 1:
|
85 |
+
# mean_reward = float(parsed[0].strip())
|
86 |
+
# std_reward = float(parsed[1].strip())
|
87 |
+
# elif len(parsed) == 1: # only mean reward
|
88 |
+
# mean_reward = float(parsed[0].strip())
|
89 |
+
# std_reward = float(0)
|
90 |
+
# else:
|
91 |
+
# mean_reward = float(default_std)
|
92 |
+
# std_reward = float(default_reward)
|
93 |
+
|
94 |
+
# else:
|
95 |
+
# mean_reward = float(default_std)
|
96 |
+
# std_reward = float(default_reward)
|
97 |
+
# return mean_reward, std_reward
|
98 |
+
|
99 |
+
|
100 |
+
def rank_dataframe(dataframe):
|
101 |
+
dataframe = dataframe.sort_values(
|
102 |
+
by=["Cumulative Reward", "User", "Model"], ascending=False
|
103 |
+
)
|
104 |
+
if not "Ranking" in dataframe.columns:
|
105 |
+
dataframe.insert(0, "Ranking", [i for i in range(1, len(dataframe) + 1)])
|
106 |
+
else:
|
107 |
+
dataframe["Ranking"] = [i for i in range(1, len(dataframe) + 1)]
|
108 |
+
return dataframe
|
109 |
+
|
110 |
+
|
111 |
+
def update_leaderboard_dataset_parallel(hivex_env, path):
|
112 |
+
# Get model ids associated with hivex_env
|
113 |
+
model_ids = get_model_ids(hivex_env)
|
114 |
+
|
115 |
+
def process_model(model_id):
|
116 |
+
meta = get_metadata(model_id)
|
117 |
+
# LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
|
118 |
+
if meta is None:
|
119 |
+
return None
|
120 |
+
user_id = model_id.split("/")[0]
|
121 |
+
row = {}
|
122 |
+
row["User"] = user_id
|
123 |
+
row["Model"] = model_id
|
124 |
+
# accuracy = parse_metrics_accuracy(meta)
|
125 |
+
# mean_reward, std_reward = parse_rewards(accuracy)
|
126 |
+
# mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
127 |
+
# std_reward = std_reward if not pd.isna(std_reward) else 0
|
128 |
+
# row["Results"] = mean_reward - std_reward
|
129 |
+
# row["Mean Reward"] = mean_reward
|
130 |
+
# row["Std Reward"] = std_reward
|
131 |
+
results = meta["model-index"][0]["results"][0]["metrics"]
|
132 |
+
|
133 |
+
for result in results:
|
134 |
+
row[result["name"]] = float(result["value"].split("+/-")[0].strip())
|
135 |
+
|
136 |
+
return row
|
137 |
+
|
138 |
+
data = list(thread_map(process_model, model_ids, desc="Processing models"))
|
139 |
+
|
140 |
+
# Filter out None results (models with no metadata)
|
141 |
+
data = [row for row in data if row is not None]
|
142 |
+
|
143 |
+
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
144 |
+
new_history = ranked_dataframe
|
145 |
+
file_path = path + "/" + hivex_env + ".csv"
|
146 |
+
new_history.to_csv(file_path, index=False)
|
147 |
+
|
148 |
+
return ranked_dataframe
|
149 |
+
|
150 |
+
|
151 |
+
def run_update_dataset():
|
152 |
+
path_ = download_leaderboard_dataset()
|
153 |
+
for i in range(0, len(hivex_envs)):
|
154 |
+
hivex_env = hivex_envs[i]
|
155 |
+
update_leaderboard_dataset_parallel(hivex_env["hivex_env"], path_)
|
156 |
+
|
157 |
+
api.upload_folder(
|
158 |
+
folder_path=path_,
|
159 |
+
repo_id="hivex-research/hivex-leaderboard-data",
|
160 |
+
repo_type="dataset",
|
161 |
+
commit_message="Update dataset",
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
def get_data(rl_env, path) -> pd.DataFrame:
|
166 |
+
"""
|
167 |
+
Get data from rl_env
|
168 |
+
:return: data as a pandas DataFrame
|
169 |
+
"""
|
170 |
+
csv_path = path + "/" + rl_env + ".csv"
|
171 |
+
data = pd.read_csv(csv_path)
|
172 |
+
|
173 |
+
for index, row in data.iterrows():
|
174 |
+
user_id = row["User"]
|
175 |
+
data.loc[index, "User"] = make_clickable_user(user_id)
|
176 |
+
model_id = row["Model"]
|
177 |
+
data.loc[index, "Model"] = make_clickable_model(model_id)
|
178 |
+
|
179 |
+
return data
|
180 |
+
|
181 |
+
|
182 |
+
def get_data_no_html(rl_env, path) -> pd.DataFrame:
|
183 |
+
"""
|
184 |
+
Get data from rl_env
|
185 |
+
:return: data as a pandas DataFrame
|
186 |
+
"""
|
187 |
+
csv_path = path + "/" + rl_env + ".csv"
|
188 |
+
data = pd.read_csv(csv_path)
|
189 |
+
|
190 |
+
return data
|
191 |
+
|
192 |
+
|
193 |
+
run_update_dataset()
|
194 |
+
|
195 |
+
main_block = gr.Blocks()
|
196 |
+
with main_block:
|
197 |
+
with gr.Row(elem_id="header-row"):
|
198 |
+
# TITLE + "<p>Total models: " + str(len(HARD_LEADERBOARD_DF))+ "</p>"
|
199 |
+
gr.HTML("<h1>Leaderboard</h1>")
|
200 |
+
|
201 |
+
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
202 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
203 |
+
with gr.Tab("π Hard Set") as hard_tabs:
|
204 |
+
with gr.TabItem(
|
205 |
+
"π
Benchmark", elem_id="llm-benchmark-tab-table", id="hard_bench"
|
206 |
+
):
|
207 |
+
gr.DataTable(
|
208 |
+
get_data(
|
209 |
+
"hivex-wind-farm-control", "datasets/hivex-leaderboard-data"
|
210 |
+
),
|
211 |
+
elem_id="hard_benchmark_table",
|
212 |
+
elem_classes="table",
|
213 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pip install -r requirements.txt
|
2 |
+
APScheduler==3.10.1
|
3 |
+
gradio==4.0
|
4 |
+
httpx==0.24.0
|
5 |
+
tqdm
|
utils.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Based on Omar Sanseviero work
|
2 |
+
# Make model clickable link
|
3 |
+
def make_clickable_model(model_name):
|
4 |
+
# remove user from model name
|
5 |
+
model_name_show = " ".join(model_name.split("/")[1:])
|
6 |
+
|
7 |
+
link = "https://huggingface.co/" + model_name
|
8 |
+
return f'<a target="_blank" href="{link}">{model_name_show}</a>'
|
9 |
+
|
10 |
+
|
11 |
+
# Make user clickable link
|
12 |
+
def make_clickable_user(user_id):
|
13 |
+
link = "https://huggingface.co/" + user_id
|
14 |
+
return f'<a target="_blank" href="{link}">{user_id}</a>'
|