- app.py +213 -0
- requirements.txt +5 -0
- utils.py +14 -0
app.py
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import requests
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
|
| 8 |
+
from huggingface_hub.repocard import metadata_load
|
| 9 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 10 |
+
|
| 11 |
+
from tqdm.contrib.concurrent import thread_map
|
| 12 |
+
|
| 13 |
+
from utils import make_clickable_model, make_clickable_user
|
| 14 |
+
|
| 15 |
+
DATASET_REPO_URL = (
|
| 16 |
+
"https://huggingface.co/datasets/hivex-research/hivex-leaderboard-data"
|
| 17 |
+
)
|
| 18 |
+
DATASET_REPO_ID = "hivex-research/hivex-leaderboard-data"
|
| 19 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 20 |
+
|
| 21 |
+
block = gr.Blocks()
|
| 22 |
+
api = HfApi(token=HF_TOKEN)
|
| 23 |
+
|
| 24 |
+
hivex_envs = [
|
| 25 |
+
{
|
| 26 |
+
"hivex_env": "hivex-wind-farm-control",
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"hivex_env": "hivex-wildfire-resource-management",
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"hivex_env": "hivex-drone-based-reforestation",
|
| 33 |
+
},
|
| 34 |
+
{
|
| 35 |
+
"hivex_env": "hivex-ocean-plastic-collection",
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"hivex_env": "hivex-aerial-wildfire-suppression",
|
| 39 |
+
},
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def restart():
|
| 44 |
+
print("RESTART")
|
| 45 |
+
api.restart_space(repo_id="hivex-research/hivex-leaderboard")
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def download_leaderboard_dataset():
|
| 49 |
+
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
|
| 50 |
+
return path
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def get_model_ids(hivex_env):
|
| 54 |
+
api = HfApi()
|
| 55 |
+
models = api.list_models(filter=hivex_env)
|
| 56 |
+
model_ids = [x.modelId for x in models]
|
| 57 |
+
return model_ids
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def get_metadata(model_id):
|
| 61 |
+
try:
|
| 62 |
+
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
|
| 63 |
+
return metadata_load(readme_path)
|
| 64 |
+
except requests.exceptions.HTTPError:
|
| 65 |
+
# 404 README.md not found
|
| 66 |
+
return None
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# def parse_metrics_accuracy(meta):
|
| 70 |
+
# if "model-index" not in meta:
|
| 71 |
+
# return None
|
| 72 |
+
# result = meta["model-index"][0]["results"]
|
| 73 |
+
# metrics = result[0]["metrics"]
|
| 74 |
+
# accuracy = metrics[0]["value"]
|
| 75 |
+
# return accuracy
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
# def parse_rewards(accuracy):
|
| 79 |
+
# default_std = -1000
|
| 80 |
+
# default_reward = -1000
|
| 81 |
+
# if accuracy != None:
|
| 82 |
+
# accuracy = str(accuracy)
|
| 83 |
+
# parsed = accuracy.split("+/-")
|
| 84 |
+
# if len(parsed) > 1:
|
| 85 |
+
# mean_reward = float(parsed[0].strip())
|
| 86 |
+
# std_reward = float(parsed[1].strip())
|
| 87 |
+
# elif len(parsed) == 1: # only mean reward
|
| 88 |
+
# mean_reward = float(parsed[0].strip())
|
| 89 |
+
# std_reward = float(0)
|
| 90 |
+
# else:
|
| 91 |
+
# mean_reward = float(default_std)
|
| 92 |
+
# std_reward = float(default_reward)
|
| 93 |
+
|
| 94 |
+
# else:
|
| 95 |
+
# mean_reward = float(default_std)
|
| 96 |
+
# std_reward = float(default_reward)
|
| 97 |
+
# return mean_reward, std_reward
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def rank_dataframe(dataframe):
|
| 101 |
+
dataframe = dataframe.sort_values(
|
| 102 |
+
by=["Cumulative Reward", "User", "Model"], ascending=False
|
| 103 |
+
)
|
| 104 |
+
if not "Ranking" in dataframe.columns:
|
| 105 |
+
dataframe.insert(0, "Ranking", [i for i in range(1, len(dataframe) + 1)])
|
| 106 |
+
else:
|
| 107 |
+
dataframe["Ranking"] = [i for i in range(1, len(dataframe) + 1)]
|
| 108 |
+
return dataframe
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def update_leaderboard_dataset_parallel(hivex_env, path):
|
| 112 |
+
# Get model ids associated with hivex_env
|
| 113 |
+
model_ids = get_model_ids(hivex_env)
|
| 114 |
+
|
| 115 |
+
def process_model(model_id):
|
| 116 |
+
meta = get_metadata(model_id)
|
| 117 |
+
# LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
|
| 118 |
+
if meta is None:
|
| 119 |
+
return None
|
| 120 |
+
user_id = model_id.split("/")[0]
|
| 121 |
+
row = {}
|
| 122 |
+
row["User"] = user_id
|
| 123 |
+
row["Model"] = model_id
|
| 124 |
+
# accuracy = parse_metrics_accuracy(meta)
|
| 125 |
+
# mean_reward, std_reward = parse_rewards(accuracy)
|
| 126 |
+
# mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
| 127 |
+
# std_reward = std_reward if not pd.isna(std_reward) else 0
|
| 128 |
+
# row["Results"] = mean_reward - std_reward
|
| 129 |
+
# row["Mean Reward"] = mean_reward
|
| 130 |
+
# row["Std Reward"] = std_reward
|
| 131 |
+
results = meta["model-index"][0]["results"][0]["metrics"]
|
| 132 |
+
|
| 133 |
+
for result in results:
|
| 134 |
+
row[result["name"]] = float(result["value"].split("+/-")[0].strip())
|
| 135 |
+
|
| 136 |
+
return row
|
| 137 |
+
|
| 138 |
+
data = list(thread_map(process_model, model_ids, desc="Processing models"))
|
| 139 |
+
|
| 140 |
+
# Filter out None results (models with no metadata)
|
| 141 |
+
data = [row for row in data if row is not None]
|
| 142 |
+
|
| 143 |
+
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
| 144 |
+
new_history = ranked_dataframe
|
| 145 |
+
file_path = path + "/" + hivex_env + ".csv"
|
| 146 |
+
new_history.to_csv(file_path, index=False)
|
| 147 |
+
|
| 148 |
+
return ranked_dataframe
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def run_update_dataset():
|
| 152 |
+
path_ = download_leaderboard_dataset()
|
| 153 |
+
for i in range(0, len(hivex_envs)):
|
| 154 |
+
hivex_env = hivex_envs[i]
|
| 155 |
+
update_leaderboard_dataset_parallel(hivex_env["hivex_env"], path_)
|
| 156 |
+
|
| 157 |
+
api.upload_folder(
|
| 158 |
+
folder_path=path_,
|
| 159 |
+
repo_id="hivex-research/hivex-leaderboard-data",
|
| 160 |
+
repo_type="dataset",
|
| 161 |
+
commit_message="Update dataset",
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def get_data(rl_env, path) -> pd.DataFrame:
|
| 166 |
+
"""
|
| 167 |
+
Get data from rl_env
|
| 168 |
+
:return: data as a pandas DataFrame
|
| 169 |
+
"""
|
| 170 |
+
csv_path = path + "/" + rl_env + ".csv"
|
| 171 |
+
data = pd.read_csv(csv_path)
|
| 172 |
+
|
| 173 |
+
for index, row in data.iterrows():
|
| 174 |
+
user_id = row["User"]
|
| 175 |
+
data.loc[index, "User"] = make_clickable_user(user_id)
|
| 176 |
+
model_id = row["Model"]
|
| 177 |
+
data.loc[index, "Model"] = make_clickable_model(model_id)
|
| 178 |
+
|
| 179 |
+
return data
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def get_data_no_html(rl_env, path) -> pd.DataFrame:
|
| 183 |
+
"""
|
| 184 |
+
Get data from rl_env
|
| 185 |
+
:return: data as a pandas DataFrame
|
| 186 |
+
"""
|
| 187 |
+
csv_path = path + "/" + rl_env + ".csv"
|
| 188 |
+
data = pd.read_csv(csv_path)
|
| 189 |
+
|
| 190 |
+
return data
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
run_update_dataset()
|
| 194 |
+
|
| 195 |
+
main_block = gr.Blocks()
|
| 196 |
+
with main_block:
|
| 197 |
+
with gr.Row(elem_id="header-row"):
|
| 198 |
+
# TITLE + "<p>Total models: " + str(len(HARD_LEADERBOARD_DF))+ "</p>"
|
| 199 |
+
gr.HTML("<h1>Leaderboard</h1>")
|
| 200 |
+
|
| 201 |
+
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 202 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 203 |
+
with gr.Tab("π Hard Set") as hard_tabs:
|
| 204 |
+
with gr.TabItem(
|
| 205 |
+
"π
Benchmark", elem_id="llm-benchmark-tab-table", id="hard_bench"
|
| 206 |
+
):
|
| 207 |
+
gr.DataTable(
|
| 208 |
+
get_data(
|
| 209 |
+
"hivex-wind-farm-control", "datasets/hivex-leaderboard-data"
|
| 210 |
+
),
|
| 211 |
+
elem_id="hard_benchmark_table",
|
| 212 |
+
elem_classes="table",
|
| 213 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pip install -r requirements.txt
|
| 2 |
+
APScheduler==3.10.1
|
| 3 |
+
gradio==4.0
|
| 4 |
+
httpx==0.24.0
|
| 5 |
+
tqdm
|
utils.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Based on Omar Sanseviero work
|
| 2 |
+
# Make model clickable link
|
| 3 |
+
def make_clickable_model(model_name):
|
| 4 |
+
# remove user from model name
|
| 5 |
+
model_name_show = " ".join(model_name.split("/")[1:])
|
| 6 |
+
|
| 7 |
+
link = "https://huggingface.co/" + model_name
|
| 8 |
+
return f'<a target="_blank" href="{link}">{model_name_show}</a>'
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# Make user clickable link
|
| 12 |
+
def make_clickable_user(user_id):
|
| 13 |
+
link = "https://huggingface.co/" + user_id
|
| 14 |
+
return f'<a target="_blank" href="{link}">{user_id}</a>'
|