philippds commited on
Commit
75db840
·
verified ·
1 Parent(s): 3f65c64

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -14
app.py CHANGED
@@ -251,32 +251,32 @@ def convert_to_title_case(text: str) -> str:
251
  return title_case_text
252
 
253
 
254
- def get_difficulty_pattern_ids_and_key(rl_env, path):
255
  csv_path = path + "/" + rl_env + ".csv"
256
  data = pd.read_csv(csv_path)
257
 
258
  if "Pattern" in data.columns:
259
  key = "Pattern"
260
- difficulty_pattern_ids = sorted(data[key].unique())
261
- elif "Difficulty" in data.columns:
262
- key = "Difficulty"
263
- difficulty_pattern_ids = sorted(data[key].unique())
264
  else:
265
  key = None
266
- difficulty_pattern_ids = []
267
 
268
- return key, difficulty_pattern_ids
269
 
270
  def filter_data(rl_env, task_id, selected_values, path):
271
  """
272
- Filters the data based on the selected difficulty/pattern values.
273
  """
274
  data = get_data(rl_env, task_id, path)
275
 
276
  # If there are selected values, filter the DataFrame
277
  if selected_values:
278
- filter_column = "Pattern" if "Pattern" in data.columns else "Difficulty"
279
- if filter_column == "Difficulty":
280
  selected_values = [np.int64(sv) for sv in selected_values]
281
  data = data[data[filter_column].isin(selected_values)]
282
 
@@ -320,14 +320,14 @@ with block:
320
  for env_index in range(0, len(hivex_envs)):
321
  hivex_env = hivex_envs[env_index]
322
  with gr.Tab(f"{hivex_env['title']}") as env_tabs:
323
- dp_key, difficulty_pattern_ids = get_difficulty_pattern_ids_and_key(
324
  hivex_env["hivex_env"], path_
325
  )
326
 
327
- # Check if dp_key is defined and difficulty_pattern_ids is not empty
328
- if dp_key is not None and len(difficulty_pattern_ids) > 0:
329
  selected_checkboxes = gr.CheckboxGroup(
330
- [str(dp_id) for dp_id in difficulty_pattern_ids], label=dp_key
331
  )
332
 
333
  for task_id in range(0, hivex_env["task_count"]):
 
251
  return title_case_text
252
 
253
 
254
+ def get_elevation_pattern_ids_and_key(rl_env, path):
255
  csv_path = path + "/" + rl_env + ".csv"
256
  data = pd.read_csv(csv_path)
257
 
258
  if "Pattern" in data.columns:
259
  key = "Pattern"
260
+ elevation_pattern_ids = sorted(data[key].unique())
261
+ elif "Terrain Elevation Levels" in data.columns:
262
+ key = "Terrain Elevation Levels"
263
+ elevation_pattern_ids = sorted(data[key].unique())
264
  else:
265
  key = None
266
+ elevation_pattern_ids = []
267
 
268
+ return key, elevation_pattern_ids
269
 
270
  def filter_data(rl_env, task_id, selected_values, path):
271
  """
272
+ Filters the data based on the selected elevation/pattern values.
273
  """
274
  data = get_data(rl_env, task_id, path)
275
 
276
  # If there are selected values, filter the DataFrame
277
  if selected_values:
278
+ filter_column = "Pattern" if "Pattern" in data.columns else "Terrain Elevation Levels"
279
+ if filter_column == "Terrain Elevation Levels":
280
  selected_values = [np.int64(sv) for sv in selected_values]
281
  data = data[data[filter_column].isin(selected_values)]
282
 
 
320
  for env_index in range(0, len(hivex_envs)):
321
  hivex_env = hivex_envs[env_index]
322
  with gr.Tab(f"{hivex_env['title']}") as env_tabs:
323
+ dp_key, elevation_pattern_ids = get_elevation_pattern_ids_and_key(
324
  hivex_env["hivex_env"], path_
325
  )
326
 
327
+ # Check if dp_key is defined and elevation_pattern_ids is not empty
328
+ if dp_key is not None and len(elevation_pattern_ids) > 0:
329
  selected_checkboxes = gr.CheckboxGroup(
330
+ [str(dp_id) for dp_id in elevation_pattern_ids], label=dp_key
331
  )
332
 
333
  for task_id in range(0, hivex_env["task_count"]):