Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
# import spaces #[uncomment to use ZeroGPU] | |
from diffusers import DiffusionPipeline | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# @spaces.GPU #[uncomment to use ZeroGPU] | |
def infer( | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return image, seed | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css = """ | |
:root { | |
--primary: #6e6af0; | |
--secondary: #f5f5f7; | |
--accent: #f5f5f7; | |
--text: #1e1e1e; | |
--shadow: 0 4px 12px rgba(0, 0, 0, 0.1); | |
} | |
#col-container { | |
margin: 0 auto; | |
max-width: 800px; | |
padding: 20px; | |
} | |
.header { | |
text-align: center; | |
margin-bottom: 20px; | |
} | |
.header h1 { | |
font-size: 2.5rem; | |
font-weight: 700; | |
color: var(--primary); | |
margin-bottom: 10px; | |
} | |
.prompt-container { | |
background: white; | |
border-radius: 12px; | |
padding: 20px; | |
box-shadow: var(--shadow); | |
margin-bottom: 20px; | |
} | |
.result-container { | |
background: white; | |
border-radius: 12px; | |
padding: 20px; | |
box-shadow: var(--shadow); | |
margin-bottom: 20px; | |
} | |
.advanced-settings { | |
background: white; | |
border-radius: 12px; | |
padding: 20px; | |
box-shadow: var(--shadow); | |
} | |
.btn-primary { | |
background: var(--primary) !important; | |
border: none !important; | |
} | |
.btn-primary:hover { | |
opacity: 0.9 !important; | |
} | |
.examples { | |
margin-top: 20px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
with gr.Column(visible=True) as header: | |
gr.Markdown( | |
""" | |
<div class="header"> | |
<h1>Text-to-Image Generator</h1> | |
</div> | |
""", | |
elem_classes="header" | |
) | |
with gr.Column(elem_classes="prompt-container"): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary", elem_classes="btn-primary") | |
with gr.Column(elem_classes="result-container"): | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=0.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=2, | |
) | |
gr.Examples(examples=examples, inputs=[prompt], elem_classes="examples") | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[result, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch() |