Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
|
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
-
from time import time
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
model_repo_id = "stabilityai/sdxl-turbo"
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
variant="fp16",
|
19 |
-
use_safetensors=True
|
20 |
-
).to(device)
|
21 |
-
else:
|
22 |
-
torch_dtype = torch.float32
|
23 |
-
pipe = DiffusionPipeline.from_pretrained(
|
24 |
-
model_repo_id,
|
25 |
-
torch_dtype=torch_dtype
|
26 |
-
).to(device)
|
27 |
-
except Exception as e:
|
28 |
-
print(f"Error loading model: {e}")
|
29 |
-
raise
|
30 |
|
31 |
MAX_SEED = np.iinfo(np.int32).max
|
32 |
MAX_IMAGE_SIZE = 1024
|
33 |
|
|
|
|
|
34 |
def infer(
|
35 |
prompt,
|
36 |
negative_prompt,
|
@@ -42,36 +33,28 @@ def infer(
|
|
42 |
num_inference_steps,
|
43 |
progress=gr.Progress(track_tqdm=True),
|
44 |
):
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
).images[0]
|
63 |
-
|
64 |
-
gen_time = time() - start_time
|
65 |
-
|
66 |
-
return image, seed, f"Generated in {gen_time:.2f}s"
|
67 |
-
except Exception as e:
|
68 |
-
print(f"Error during inference: {e}")
|
69 |
-
return None, seed, f"Error: {str(e)}"
|
70 |
|
71 |
examples = [
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
]
|
76 |
|
77 |
css = """
|
@@ -83,14 +66,6 @@ css = """
|
|
83 |
--shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
|
84 |
}
|
85 |
|
86 |
-
.dark {
|
87 |
-
--primary: #a5a5fc;
|
88 |
-
--secondary: #2d3748;
|
89 |
-
--accent: #4a5568;
|
90 |
-
--text: #f7fafc;
|
91 |
-
--shadow: 0 4px 12px rgba(0, 0, 0, 0.3);
|
92 |
-
}
|
93 |
-
|
94 |
#col-container {
|
95 |
margin: 0 auto;
|
96 |
max-width: 800px;
|
@@ -109,35 +84,32 @@ css = """
|
|
109 |
margin-bottom: 10px;
|
110 |
}
|
111 |
|
112 |
-
.
|
113 |
-
|
114 |
-
opacity: 0.8;
|
115 |
-
}
|
116 |
-
|
117 |
-
.prompt-container, .result-container, .advanced-settings {
|
118 |
-
background: var(--secondary);
|
119 |
border-radius: 12px;
|
120 |
padding: 20px;
|
121 |
box-shadow: var(--shadow);
|
122 |
margin-bottom: 20px;
|
123 |
}
|
124 |
|
125 |
-
.
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
129 |
}
|
130 |
|
131 |
-
.
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
135 |
}
|
136 |
|
137 |
.btn-primary {
|
138 |
background: var(--primary) !important;
|
139 |
border: none !important;
|
140 |
-
color: white !important;
|
141 |
}
|
142 |
|
143 |
.btn-primary:hover {
|
@@ -145,76 +117,17 @@ css = """
|
|
145 |
}
|
146 |
|
147 |
.examples {
|
148 |
-
display: grid;
|
149 |
-
grid-template-columns: repeat(auto-fill, minmax(250px, 1fr));
|
150 |
-
gap: 12px;
|
151 |
margin-top: 20px;
|
152 |
}
|
153 |
-
|
154 |
-
.example-prompt {
|
155 |
-
background: var(--secondary);
|
156 |
-
padding: 12px;
|
157 |
-
border-radius: 8px;
|
158 |
-
cursor: pointer;
|
159 |
-
transition: all 0.2s;
|
160 |
-
}
|
161 |
-
|
162 |
-
.example-prompt:hover {
|
163 |
-
transform: translateY(-2px);
|
164 |
-
box-shadow: var(--shadow);
|
165 |
-
}
|
166 |
-
|
167 |
-
.theme-toggle {
|
168 |
-
position: absolute;
|
169 |
-
top: 20px;
|
170 |
-
right: 20px;
|
171 |
-
background: var(--secondary);
|
172 |
-
border: none;
|
173 |
-
border-radius: 50%;
|
174 |
-
width: 40px;
|
175 |
-
height: 40px;
|
176 |
-
display: flex;
|
177 |
-
align-items: center;
|
178 |
-
justify-content: center;
|
179 |
-
cursor: pointer;
|
180 |
-
}
|
181 |
-
|
182 |
-
@media (max-width: 768px) {
|
183 |
-
.advanced-settings .form {
|
184 |
-
grid-template-columns: 1fr;
|
185 |
-
}
|
186 |
-
}
|
187 |
"""
|
188 |
|
189 |
-
|
190 |
-
function toggleTheme() {
|
191 |
-
const body = document.body;
|
192 |
-
body.classList.toggle('dark');
|
193 |
-
localStorage.setItem('gradio-theme', body.classList.contains('dark') ? 'dark' : 'light');
|
194 |
-
}
|
195 |
-
|
196 |
-
document.addEventListener('DOMContentLoaded', () => {
|
197 |
-
const savedTheme = localStorage.getItem('gradio-theme') || 'light';
|
198 |
-
if (savedTheme === 'dark') {
|
199 |
-
document.body.classList.add('dark');
|
200 |
-
}
|
201 |
-
|
202 |
-
const themeToggle = document.createElement('button');
|
203 |
-
themeToggle.className = 'theme-toggle';
|
204 |
-
themeToggle.innerHTML = savedTheme === 'dark' ? '☀️' : '🌙';
|
205 |
-
themeToggle.onclick = toggleTheme;
|
206 |
-
document.body.appendChild(themeToggle);
|
207 |
-
});
|
208 |
-
"""
|
209 |
-
|
210 |
-
with gr.Blocks(css=css, js=js, theme=gr.themes.Soft()) as demo:
|
211 |
with gr.Column(elem_id="col-container"):
|
212 |
with gr.Column(visible=True) as header:
|
213 |
gr.Markdown(
|
214 |
"""
|
215 |
<div class="header">
|
216 |
-
<h1
|
217 |
-
<p>Transform your text into stunning images with SDXL Turbo</p>
|
218 |
</div>
|
219 |
""",
|
220 |
elem_classes="header"
|
@@ -222,118 +135,74 @@ with gr.Blocks(css=css, js=js, theme=gr.themes.Soft()) as demo:
|
|
222 |
|
223 |
with gr.Column(elem_classes="prompt-container"):
|
224 |
with gr.Row():
|
225 |
-
prompt = gr.
|
226 |
-
label="",
|
227 |
show_label=False,
|
228 |
-
max_lines=
|
229 |
-
placeholder="
|
230 |
container=False,
|
231 |
-
scale=5
|
232 |
-
)
|
233 |
-
run_button = gr.Button(
|
234 |
-
"Generate",
|
235 |
-
scale=1,
|
236 |
-
variant="primary",
|
237 |
-
elem_classes="btn-primary"
|
238 |
)
|
|
|
239 |
|
240 |
with gr.Column(elem_classes="result-container"):
|
241 |
-
result = gr.Image(
|
242 |
-
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
)
|
|
|
|
|
|
|
246 |
with gr.Row():
|
247 |
-
|
248 |
-
label="
|
249 |
-
|
|
|
|
|
|
|
250 |
)
|
251 |
-
|
252 |
-
|
253 |
-
|
|
|
|
|
|
|
|
|
254 |
)
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
)
|
278 |
-
|
279 |
-
with gr.Column():
|
280 |
-
width = gr.Slider(
|
281 |
-
label="Width",
|
282 |
-
minimum=256,
|
283 |
-
maximum=MAX_IMAGE_SIZE,
|
284 |
-
step=32,
|
285 |
-
value=1024,
|
286 |
-
)
|
287 |
-
height = gr.Slider(
|
288 |
-
label="Height",
|
289 |
-
minimum=256,
|
290 |
-
maximum=MAX_IMAGE_SIZE,
|
291 |
-
step=32,
|
292 |
-
value=1024,
|
293 |
-
)
|
294 |
-
|
295 |
-
with gr.Row():
|
296 |
-
guidance_scale = gr.Slider(
|
297 |
-
label="Guidance Scale",
|
298 |
-
minimum=0.0,
|
299 |
-
maximum=10.0,
|
300 |
-
step=0.1,
|
301 |
-
value=0.0,
|
302 |
-
)
|
303 |
-
num_inference_steps = gr.Slider(
|
304 |
-
label="Inference Steps",
|
305 |
-
minimum=1,
|
306 |
-
maximum=50,
|
307 |
-
step=1,
|
308 |
-
value=2,
|
309 |
-
)
|
310 |
-
|
311 |
-
gr.Markdown("### Example Prompts")
|
312 |
-
with gr.Row(elem_classes="examples"):
|
313 |
-
for example in examples:
|
314 |
-
with gr.Column(min_width=200):
|
315 |
-
gr.Examples(
|
316 |
-
examples=[[example[0], example[1], example[2]]],
|
317 |
-
inputs=[prompt, width, height],
|
318 |
-
label="",
|
319 |
-
examples_per_page=20
|
320 |
-
)
|
321 |
-
|
322 |
-
run_button.click(
|
323 |
-
fn=infer,
|
324 |
-
inputs=[
|
325 |
-
prompt,
|
326 |
-
negative_prompt,
|
327 |
-
seed,
|
328 |
-
randomize_seed,
|
329 |
-
width,
|
330 |
-
height,
|
331 |
-
guidance_scale,
|
332 |
-
num_inference_steps,
|
333 |
-
],
|
334 |
-
outputs=[result, seed_info, time_info],
|
335 |
-
)
|
336 |
-
prompt.submit(
|
337 |
fn=infer,
|
338 |
inputs=[
|
339 |
prompt,
|
@@ -345,8 +214,8 @@ with gr.Blocks(css=css, js=js, theme=gr.themes.Soft()) as demo:
|
|
345 |
guidance_scale,
|
346 |
num_inference_steps,
|
347 |
],
|
348 |
-
outputs=[result,
|
349 |
)
|
350 |
|
351 |
if __name__ == "__main__":
|
352 |
-
demo.
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
|
5 |
+
# import spaces #[uncomment to use ZeroGPU]
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
|
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
+
|
12 |
+
if torch.cuda.is_available():
|
13 |
+
torch_dtype = torch.float16
|
14 |
+
else:
|
15 |
+
torch_dtype = torch.float32
|
16 |
+
|
17 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
+
pipe = pipe.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
+
|
24 |
+
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
26 |
prompt,
|
27 |
negative_prompt,
|
|
|
33 |
num_inference_steps,
|
34 |
progress=gr.Progress(track_tqdm=True),
|
35 |
):
|
36 |
+
if randomize_seed:
|
37 |
+
seed = random.randint(0, MAX_SEED)
|
38 |
+
|
39 |
+
generator = torch.Generator().manual_seed(seed)
|
40 |
+
|
41 |
+
image = pipe(
|
42 |
+
prompt=prompt,
|
43 |
+
negative_prompt=negative_prompt,
|
44 |
+
guidance_scale=guidance_scale,
|
45 |
+
num_inference_steps=num_inference_steps,
|
46 |
+
width=width,
|
47 |
+
height=height,
|
48 |
+
generator=generator,
|
49 |
+
).images[0]
|
50 |
+
|
51 |
+
return image, seed
|
52 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
examples = [
|
55 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
+
"An astronaut riding a green horse",
|
57 |
+
"A delicious ceviche cheesecake slice",
|
58 |
]
|
59 |
|
60 |
css = """
|
|
|
66 |
--shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
|
67 |
}
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
#col-container {
|
70 |
margin: 0 auto;
|
71 |
max-width: 800px;
|
|
|
84 |
margin-bottom: 10px;
|
85 |
}
|
86 |
|
87 |
+
.prompt-container {
|
88 |
+
background: white;
|
|
|
|
|
|
|
|
|
|
|
89 |
border-radius: 12px;
|
90 |
padding: 20px;
|
91 |
box-shadow: var(--shadow);
|
92 |
margin-bottom: 20px;
|
93 |
}
|
94 |
|
95 |
+
.result-container {
|
96 |
+
background: white;
|
97 |
+
border-radius: 12px;
|
98 |
+
padding: 20px;
|
99 |
+
box-shadow: var(--shadow);
|
100 |
+
margin-bottom: 20px;
|
101 |
}
|
102 |
|
103 |
+
.advanced-settings {
|
104 |
+
background: white;
|
105 |
+
border-radius: 12px;
|
106 |
+
padding: 20px;
|
107 |
+
box-shadow: var(--shadow);
|
108 |
}
|
109 |
|
110 |
.btn-primary {
|
111 |
background: var(--primary) !important;
|
112 |
border: none !important;
|
|
|
113 |
}
|
114 |
|
115 |
.btn-primary:hover {
|
|
|
117 |
}
|
118 |
|
119 |
.examples {
|
|
|
|
|
|
|
120 |
margin-top: 20px;
|
121 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
"""
|
123 |
|
124 |
+
with gr.Blocks(css=css) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
with gr.Column(elem_id="col-container"):
|
126 |
with gr.Column(visible=True) as header:
|
127 |
gr.Markdown(
|
128 |
"""
|
129 |
<div class="header">
|
130 |
+
<h1>Text-to-Image Generator</h1>
|
|
|
131 |
</div>
|
132 |
""",
|
133 |
elem_classes="header"
|
|
|
135 |
|
136 |
with gr.Column(elem_classes="prompt-container"):
|
137 |
with gr.Row():
|
138 |
+
prompt = gr.Text(
|
139 |
+
label="Prompt",
|
140 |
show_label=False,
|
141 |
+
max_lines=1,
|
142 |
+
placeholder="Enter your prompt",
|
143 |
container=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
)
|
145 |
+
run_button = gr.Button("Run", scale=0, variant="primary", elem_classes="btn-primary")
|
146 |
|
147 |
with gr.Column(elem_classes="result-container"):
|
148 |
+
result = gr.Image(label="Result", show_label=False)
|
149 |
+
|
150 |
+
with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
|
151 |
+
negative_prompt = gr.Text(
|
152 |
+
label="Negative prompt",
|
153 |
+
max_lines=1,
|
154 |
+
placeholder="Enter a negative prompt",
|
155 |
+
visible=False,
|
156 |
+
)
|
157 |
+
|
158 |
+
seed = gr.Slider(
|
159 |
+
label="Seed",
|
160 |
+
minimum=0,
|
161 |
+
maximum=MAX_SEED,
|
162 |
+
step=1,
|
163 |
+
value=0,
|
164 |
)
|
165 |
+
|
166 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
167 |
+
|
168 |
with gr.Row():
|
169 |
+
width = gr.Slider(
|
170 |
+
label="Width",
|
171 |
+
minimum=256,
|
172 |
+
maximum=MAX_IMAGE_SIZE,
|
173 |
+
step=32,
|
174 |
+
value=1024,
|
175 |
)
|
176 |
+
|
177 |
+
height = gr.Slider(
|
178 |
+
label="Height",
|
179 |
+
minimum=256,
|
180 |
+
maximum=MAX_IMAGE_SIZE,
|
181 |
+
step=32,
|
182 |
+
value=1024,
|
183 |
)
|
184 |
|
185 |
+
with gr.Row():
|
186 |
+
guidance_scale = gr.Slider(
|
187 |
+
label="Guidance scale",
|
188 |
+
minimum=0.0,
|
189 |
+
maximum=10.0,
|
190 |
+
step=0.1,
|
191 |
+
value=0.0,
|
192 |
+
)
|
193 |
+
|
194 |
+
num_inference_steps = gr.Slider(
|
195 |
+
label="Number of inference steps",
|
196 |
+
minimum=1,
|
197 |
+
maximum=50,
|
198 |
+
step=1,
|
199 |
+
value=2,
|
200 |
+
)
|
201 |
+
|
202 |
+
gr.Examples(examples=examples, inputs=[prompt], elem_classes="examples")
|
203 |
+
|
204 |
+
gr.on(
|
205 |
+
triggers=[run_button.click, prompt.submit],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
fn=infer,
|
207 |
inputs=[
|
208 |
prompt,
|
|
|
214 |
guidance_scale,
|
215 |
num_inference_steps,
|
216 |
],
|
217 |
+
outputs=[result, seed],
|
218 |
)
|
219 |
|
220 |
if __name__ == "__main__":
|
221 |
+
demo.launch()
|