import gradio as gr import numpy as np import random # import spaces #[uncomment to use ZeroGPU] from diffusers import DiffusionPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 # @spaces.GPU #[uncomment to use ZeroGPU] def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ :root { --primary: #6e6af0; --secondary: #f5f5f7; --accent: #f5f5f7; --text: #1e1e1e; --shadow: 0 4px 12px rgba(0, 0, 0, 0.1); } #col-container { margin: 0 auto; max-width: 800px; padding: 20px; } .header { text-align: center; margin-bottom: 20px; } .header h1 { font-size: 2.5rem; font-weight: 700; color: var(--primary); margin-bottom: 10px; } .prompt-container { background: white; border-radius: 12px; padding: 20px; box-shadow: var(--shadow); margin-bottom: 20px; } .result-container { background: white; border-radius: 12px; padding: 20px; box-shadow: var(--shadow); margin-bottom: 20px; } .advanced-settings { background: white; border-radius: 12px; padding: 20px; box-shadow: var(--shadow); } .btn-primary { background: var(--primary) !important; border: none !important; } .btn-primary:hover { opacity: 0.9 !important; } .examples { margin-top: 20px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): with gr.Column(visible=True) as header: gr.Markdown( """

Text-to-Image Generator

""", elem_classes="header" ) with gr.Column(elem_classes="prompt-container"): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary", elem_classes="btn-primary") with gr.Column(elem_classes="result-container"): result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=2, ) gr.Examples(examples=examples, inputs=[prompt], elem_classes="examples") gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()