evalita_llm_leaderboard / example_app2.py
rzanoli's picture
Small changes
cae4d0f
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
)
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn,
ModelType, fields, WeightType, Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
# Define the task icons and names
TASK_ICONS = {
"TE": "πŸ“Š", # Textual Entailment
"SA": "πŸ˜ƒ", # Sentiment Analysis
"HS": "⚠️", # Hate Speech
"AT": "πŸ₯", # Admission Test
"WIC": "πŸ”€", # Word in Context
"FAQ": "❓", # Frequently Asked Questions
"LS": "πŸ”„", # Lexical Substitution
"SU": "πŸ“", # Summarization
"NER": "🏷️", # Named Entity Recognition
"REL": "πŸ”—", # Relation Extraction
}
TASK_NAMES = {
"TE": "Textual Entailment",
"SA": "Sentiment Analysis",
"HS": "Hate Speech",
"AT": "Admission Test",
"WIC": "Word in Context",
"FAQ": "Frequently Asked Questions",
"LS": "Lexical Substitution",
"SU": "Summarization",
"NER": "Named Entity Recognition",
"REL": "Relation Extraction",
}
# Tooltip descriptions for each task
TASK_TOOLTIPS = {
"TE": "Identify logical relationships between two text segments.",
"SA": "Classify the sentiment (positive, negative, neutral) of a text.",
"HS": "Detect hate speech in a text.",
"AT": "Classify whether a clinical statement pertains to an admission test.",
"WIC": "Identify words in context and their meaning.",
"FAQ": "Answer frequently asked questions based on given text.",
"LS": "Identify alternative words in a given context.",
"SU": "Summarize long text into a shorter version.",
"NER": "Identify named entities (e.g., persons, locations, organizations) in text.",
"REL": "Extract and link laboratory test results to the respective tests in clinical narratives.",
}
def restart_space():
"""Restart the Hugging Face space."""
API.restart_space(repo_id=REPO_ID)
def download_snapshot(repo, local_dir):
"""Try to download a snapshot from the Hugging Face Hub, restarting space on failure."""
try:
print(f"Downloading from {repo} to {local_dir}...")
snapshot_download(repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN)
except Exception as e:
print(f"Error downloading {repo}: {e}")
restart_space()
# Space initialization
download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
# Load leaderboard and evaluation queue data
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""Initialize a leaderboard with specific columns."""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
#ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.fewshot_type.name, type="checkboxgroup", label="Few-Shot Learning (FS)"),
#ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0.01, max=150, label="Select the number of parameters (B)"),
#ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def prepare_leaderboard_df(df, task_prefix):
"""Rename columns for a specific task to a standard format."""
return df.rename(columns={
f"{task_prefix} Prompt Average": "Prompt Average",
f"{task_prefix} Best Prompt": "Best Prompt",
f"{task_prefix} Best Prompt Id": "Best Prompt Id",
task_prefix: "Combined Performance"
})
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# Main leaderboard tab
with gr.TabItem("πŸ… EVALITA-LLM Benchmark", elem_id="llm-benchmark-tab-table"):
leaderboard = init_leaderboard(
LEADERBOARD_DF,
default_selection=['FS', 'Model', "Avg. Combined Performance ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in
['FS', 'Model', "Avg. Combined Performance ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
)
# About tab
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table"):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
'''
# Submission tab
with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table"):
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
for queue_name, queue_df in [
("βœ… Finished Evaluations", finished_eval_queue_df),
("πŸ”„ Running Evaluation Queue", running_eval_queue_df),
("⏳ Pending Evaluation Queue", pending_eval_queue_df)
]:
with gr.Accordion(f"{queue_name} ({len(queue_df)})", open=False):
gr.components.Dataframe(value=queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5)
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type", multiselect=False, interactive=True)
precision = gr.Dropdown(choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision", multiselect=False, value="float16", interactive=True)
weight_type = gr.Dropdown(choices=[i.value.name for i in WeightType],
label="Weights type", multiselect=False, value="Original", interactive=True)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[model_name_textbox, base_model_name_textbox, revision_name_textbox, precision, weight_type, model_type],
submission_result,
)
'''
# Task-specific leaderboards
for task in ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]:
with gr.TabItem(f"{TASK_ICONS[task]}{task}", elem_id="llm-benchmark-tab-table"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
gr.Markdown(MEASURE_DESCRIPTION, elem_classes="markdown-text")
leaderboard = init_leaderboard(
prepare_leaderboard_df(LEADERBOARD_DF, task),
default_selection=['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in
['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']]
)
# Citation section
with gr.Accordion("πŸ“™ Citation", open=False):
gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)
# Background job to restart space
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()