Small changes
Browse files- README.md +1 -1
- app.py +119 -323
- example_app.py +324 -0
- app2.py → example_app2.py +73 -10
- get_model_info.py +16 -3
- src/about.py +3 -1
- src/display/utils.py +44 -7
- src/leaderboard/read_evals.py +95 -259
- src/leaderboard/read_evals_old.py +296 -0
- src/populate.py +1 -1
- src/submission/check_validity.py +1 -1
- src/tasks.py +140 -5
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🥇
|
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
app_file:
|
8 |
pinned: true
|
9 |
license: apache-2.0
|
10 |
short_description: Duplicate this leaderboard to initialize your own!
|
|
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
app_file: example_app.py
|
8 |
pinned: true
|
9 |
license: apache-2.0
|
10 |
short_description: Duplicate this leaderboard to initialize your own!
|
app.py
CHANGED
@@ -1,324 +1,120 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
-
import pandas as pd
|
4 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
-
from huggingface_hub import snapshot_download
|
6 |
-
|
7 |
-
from src.
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
)
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
)
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
bool_checkboxgroup_label="Hide models",
|
121 |
-
interactive=False,
|
122 |
-
)
|
123 |
-
|
124 |
-
|
125 |
-
demo = gr.Blocks(css=custom_css)
|
126 |
-
with demo:
|
127 |
-
gr.HTML(TITLE)
|
128 |
-
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
129 |
-
|
130 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
131 |
-
with gr.TabItem("🏅 EVALITA-LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
132 |
-
#leaderboard = init_leaderboard(LEADERBOARD_DF)
|
133 |
-
|
134 |
-
leaderboard = init_leaderboard2(
|
135 |
-
LEADERBOARD_DF,
|
136 |
-
default_selection=['T', 'Model', "Average ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
|
137 |
-
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
138 |
-
col not in ['T', 'Model', "Average ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL" ]]
|
139 |
-
)
|
140 |
-
|
141 |
-
|
142 |
-
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
143 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
144 |
-
|
145 |
-
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
146 |
-
with gr.Column():
|
147 |
-
with gr.Row():
|
148 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
149 |
-
|
150 |
-
with gr.Column():
|
151 |
-
with gr.Accordion(
|
152 |
-
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
153 |
-
open=False,
|
154 |
-
):
|
155 |
-
with gr.Row():
|
156 |
-
finished_eval_table = gr.components.Dataframe(
|
157 |
-
value=finished_eval_queue_df,
|
158 |
-
headers=EVAL_COLS,
|
159 |
-
datatype=EVAL_TYPES,
|
160 |
-
row_count=5,
|
161 |
-
)
|
162 |
-
with gr.Accordion(
|
163 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
164 |
-
open=False,
|
165 |
-
):
|
166 |
-
with gr.Row():
|
167 |
-
running_eval_table = gr.components.Dataframe(
|
168 |
-
value=running_eval_queue_df,
|
169 |
-
headers=EVAL_COLS,
|
170 |
-
datatype=EVAL_TYPES,
|
171 |
-
row_count=5,
|
172 |
-
)
|
173 |
-
|
174 |
-
with gr.Accordion(
|
175 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
176 |
-
open=False,
|
177 |
-
):
|
178 |
-
with gr.Row():
|
179 |
-
pending_eval_table = gr.components.Dataframe(
|
180 |
-
value=pending_eval_queue_df,
|
181 |
-
headers=EVAL_COLS,
|
182 |
-
datatype=EVAL_TYPES,
|
183 |
-
row_count=5,
|
184 |
-
)
|
185 |
-
with gr.Row():
|
186 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
187 |
-
|
188 |
-
with gr.Row():
|
189 |
-
with gr.Column():
|
190 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
191 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
192 |
-
model_type = gr.Dropdown(
|
193 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
194 |
-
label="Model type",
|
195 |
-
multiselect=False,
|
196 |
-
value=None,
|
197 |
-
interactive=True,
|
198 |
-
)
|
199 |
-
|
200 |
-
with gr.Column():
|
201 |
-
precision = gr.Dropdown(
|
202 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
203 |
-
label="Precision",
|
204 |
-
multiselect=False,
|
205 |
-
value="float16",
|
206 |
-
interactive=True,
|
207 |
-
)
|
208 |
-
weight_type = gr.Dropdown(
|
209 |
-
choices=[i.value.name for i in WeightType],
|
210 |
-
label="Weights type",
|
211 |
-
multiselect=False,
|
212 |
-
value="Original",
|
213 |
-
interactive=True,
|
214 |
-
)
|
215 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
216 |
-
|
217 |
-
submit_button = gr.Button("Submit Eval")
|
218 |
-
submission_result = gr.Markdown()
|
219 |
-
submit_button.click(
|
220 |
-
add_new_eval,
|
221 |
-
[
|
222 |
-
model_name_textbox,
|
223 |
-
base_model_name_textbox,
|
224 |
-
revision_name_textbox,
|
225 |
-
precision,
|
226 |
-
weight_type,
|
227 |
-
model_type,
|
228 |
-
],
|
229 |
-
submission_result,
|
230 |
-
)
|
231 |
-
|
232 |
-
|
233 |
-
with gr.TabItem("TE", elem_id="llm-benchmark-tab-table", id=4):
|
234 |
-
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
235 |
-
#leaderboard = init_leaderboard(LEADERBOARD_DF)
|
236 |
-
|
237 |
-
LEADERBOARD_DF_TE = LEADERBOARD_DF.rename(columns={"TE Prompt Average": "Prompt Average",
|
238 |
-
"TE Best Prompt": "Best Prompt",
|
239 |
-
"TE Best Prompt Id": "Best Prompt Id",
|
240 |
-
"TE": "Combined Performance"})
|
241 |
-
|
242 |
-
leaderboard = init_leaderboard2(
|
243 |
-
LEADERBOARD_DF_TE,
|
244 |
-
default_selection=['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'],
|
245 |
-
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
246 |
-
col not in ['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']]
|
247 |
-
)
|
248 |
-
|
249 |
-
|
250 |
-
with gr.TabItem("SA", elem_id="llm-benchmark-tab-table", id=5):
|
251 |
-
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
252 |
-
|
253 |
-
LEADERBOARD_DF_SA = LEADERBOARD_DF.rename(columns={"SA Prompt Average": "Prompt Average",
|
254 |
-
"SA Best Prompt": "Best Prompt",
|
255 |
-
"SA Best Prompt Id": "Best Prompt Id",
|
256 |
-
"SA": "Combined Performance"})
|
257 |
-
|
258 |
-
leaderboard = init_leaderboard2(
|
259 |
-
LEADERBOARD_DF_SA,
|
260 |
-
default_selection=['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt',
|
261 |
-
'Best Prompt Id'],
|
262 |
-
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
263 |
-
col not in ['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt',
|
264 |
-
'Best Prompt Id']]
|
265 |
-
)
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
with gr.TabItem("HS", elem_id="llm-benchmark-tab-table", id=6):
|
271 |
-
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
272 |
-
|
273 |
-
LEADERBOARD_DF_HS = LEADERBOARD_DF.rename(columns={"HS Prompt Average": "Prompt Average",
|
274 |
-
"HS Best Prompt": "Best Prompt",
|
275 |
-
"HS Best Prompt Id": "Best Prompt Id",
|
276 |
-
"HS": "Combined Performance"})
|
277 |
-
|
278 |
-
leaderboard = init_leaderboard2(
|
279 |
-
LEADERBOARD_DF_HS,
|
280 |
-
default_selection=['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt',
|
281 |
-
'Best Prompt Id'],
|
282 |
-
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
283 |
-
col not in ['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt',
|
284 |
-
'Best Prompt Id']]
|
285 |
-
)
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
with gr.TabItem("AT", elem_id="llm-benchmark-tab-table", id=7):
|
290 |
-
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
291 |
-
|
292 |
-
with gr.TabItem("WIC", elem_id="llm-benchmark-tab-table", id=8):
|
293 |
-
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
294 |
-
|
295 |
-
with gr.TabItem("FAQ", elem_id="llm-benchmark-tab-table", id=9):
|
296 |
-
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
297 |
-
|
298 |
-
with gr.TabItem("LS", elem_id="llm-benchmark-tab-table", id=10):
|
299 |
-
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
300 |
-
|
301 |
-
with gr.TabItem("SU", elem_id="llm-benchmark-tab-table", id=11):
|
302 |
-
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
303 |
-
|
304 |
-
with gr.TabItem("NER", elem_id="llm-benchmark-tab-table", id=12):
|
305 |
-
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
306 |
-
|
307 |
-
with gr.TabItem("REL", elem_id="llm-benchmark-tab-table", id=13):
|
308 |
-
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
309 |
-
|
310 |
-
|
311 |
-
with gr.Row():
|
312 |
-
with gr.Accordion("📙 Citation", open=False):
|
313 |
-
citation_button = gr.Textbox(
|
314 |
-
value=CITATION_BUTTON_TEXT,
|
315 |
-
label=CITATION_BUTTON_LABEL,
|
316 |
-
lines=20,
|
317 |
-
elem_id="citation-button",
|
318 |
-
show_copy_button=True,
|
319 |
-
)
|
320 |
-
|
321 |
-
scheduler = BackgroundScheduler()
|
322 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
323 |
-
scheduler.start()
|
324 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
+
import pandas as pd
|
4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
|
7 |
+
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
|
8 |
+
from src.display.css_html_js import custom_css
|
9 |
+
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision
|
10 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
11 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
12 |
+
from src.submission.submit import add_new_eval
|
13 |
+
|
14 |
+
|
15 |
+
# Define task metadata (icons, names, descriptions)
|
16 |
+
TASK_METADATA = {
|
17 |
+
"TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": "Identify logical relationships between two text segments."},
|
18 |
+
"SA": {"icon": "😃", "name": "Sentiment Analysis", "tooltip": "Classify the sentiment (positive, negative, neutral) of a text."},
|
19 |
+
"HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": "Detect hate speech in a text."},
|
20 |
+
"AT": {"icon": "🏥", "name": "Admission Test", "tooltip": "Classify whether a clinical statement pertains to an admission test."},
|
21 |
+
"WIC": {"icon": "🔤", "name": "Word in Context", "tooltip": "Identify words in context and their meaning."},
|
22 |
+
"FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": "Answer frequently asked questions based on given text."},
|
23 |
+
"LS": {"icon": "🔄", "name": "Lexical Substitution", "tooltip": "Identify alternative words in a given context."},
|
24 |
+
"SU": {"icon": "📝", "name": "Summarization", "tooltip": "Summarize long text into a shorter version."},
|
25 |
+
"NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": "Identify named entities (e.g., persons, locations, organizations) in text."},
|
26 |
+
"REL": {"icon": "🔗", "name": "Relation Extraction", "tooltip": "Extract and link laboratory test results to the respective tests in clinical narratives."},
|
27 |
+
}
|
28 |
+
|
29 |
+
def restart_space():
|
30 |
+
"""Restart the Hugging Face space."""
|
31 |
+
API.restart_space(repo_id=REPO_ID)
|
32 |
+
|
33 |
+
# Helper function for leaderboard initialization
|
34 |
+
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
35 |
+
"""Initialize and return a leaderboard."""
|
36 |
+
if dataframe is None or dataframe.empty:
|
37 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
38 |
+
|
39 |
+
return Leaderboard(
|
40 |
+
value=dataframe,
|
41 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
42 |
+
select_columns=SelectColumns(
|
43 |
+
default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
44 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
45 |
+
label="Select Columns to Display:",
|
46 |
+
),
|
47 |
+
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
48 |
+
hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],
|
49 |
+
filter_columns=[
|
50 |
+
ColumnFilter(AutoEvalColumn.fewshot_type.name, type="checkboxgroup", label="Few-Shot Learning (FS)"),
|
51 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0.01, max=150, label="Select the number of parameters (B)"),
|
52 |
+
],
|
53 |
+
bool_checkboxgroup_label="Hide models",
|
54 |
+
interactive=False,
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
def download_snapshot(repo, local_dir):
|
59 |
+
"""Try to download a snapshot from Hugging Face Hub."""
|
60 |
+
try:
|
61 |
+
print(f"Downloading from {repo} to {local_dir}...")
|
62 |
+
snapshot_download(repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN)
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Error downloading {repo}: {e}")
|
65 |
+
restart_space()
|
66 |
+
|
67 |
+
|
68 |
+
# Initialize the app by downloading snapshots
|
69 |
+
download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
|
70 |
+
download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
|
71 |
+
|
72 |
+
# Load leaderboard data
|
73 |
+
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
74 |
+
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
75 |
+
|
76 |
+
# Prepare the main interface
|
77 |
+
demo = gr.Blocks(css=custom_css)
|
78 |
+
with demo:
|
79 |
+
gr.HTML(TITLE)
|
80 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
81 |
+
|
82 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
83 |
+
# Main leaderboard tab
|
84 |
+
with gr.TabItem("🏅 EVALITA-LLM Benchmark"):
|
85 |
+
leaderboard = init_leaderboard(
|
86 |
+
LEADERBOARD_DF,
|
87 |
+
default_selection=['FS', 'Model', "Avg. Combined Performance ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
|
88 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['FS', 'Model', "Avg. Combined Performance ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
|
89 |
+
)
|
90 |
+
|
91 |
+
# About tab
|
92 |
+
with gr.TabItem("📝 About"):
|
93 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
94 |
+
|
95 |
+
# Task-specific leaderboards
|
96 |
+
for task, metadata in TASK_METADATA.items():
|
97 |
+
with gr.TabItem(f"{metadata['icon']}{task}"):
|
98 |
+
|
99 |
+
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
100 |
+
gr.Markdown(task_description, elem_classes="markdown-text")
|
101 |
+
|
102 |
+
gr.Markdown(MEASURE_DESCRIPTION, elem_classes="markdown-text")
|
103 |
+
|
104 |
+
leaderboard = init_leaderboard(
|
105 |
+
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
|
106 |
+
default_selection=['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'],
|
107 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']]
|
108 |
+
)
|
109 |
+
|
110 |
+
# Citation section
|
111 |
+
with gr.Accordion("📙 Citation", open=False):
|
112 |
+
gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)
|
113 |
+
|
114 |
+
# Background job to restart space
|
115 |
+
scheduler = BackgroundScheduler()
|
116 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
117 |
+
scheduler.start()
|
118 |
+
|
119 |
+
# Launch the app with concurrent queueing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
demo.queue(default_concurrency_limit=40).launch()
|
example_app.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
+
import pandas as pd
|
4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
|
7 |
+
from src.about import (
|
8 |
+
CITATION_BUTTON_LABEL,
|
9 |
+
CITATION_BUTTON_TEXT,
|
10 |
+
EVALUATION_QUEUE_TEXT,
|
11 |
+
INTRODUCTION_TEXT,
|
12 |
+
LLM_BENCHMARKS_TEXT,
|
13 |
+
TITLE,
|
14 |
+
)
|
15 |
+
|
16 |
+
from src.tasks import (
|
17 |
+
TE_DESCRIPTION,
|
18 |
+
)
|
19 |
+
|
20 |
+
from src.display.css_html_js import custom_css
|
21 |
+
from src.display.utils import (
|
22 |
+
BENCHMARK_COLS,
|
23 |
+
COLS,
|
24 |
+
EVAL_COLS,
|
25 |
+
EVAL_TYPES,
|
26 |
+
AutoEvalColumn,
|
27 |
+
ModelType,
|
28 |
+
fields,
|
29 |
+
WeightType,
|
30 |
+
Precision
|
31 |
+
)
|
32 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
33 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
34 |
+
from src.submission.submit import add_new_eval
|
35 |
+
|
36 |
+
|
37 |
+
def restart_space():
|
38 |
+
API.restart_space(repo_id=REPO_ID)
|
39 |
+
|
40 |
+
### Space initialisation
|
41 |
+
try:
|
42 |
+
print(EVAL_REQUESTS_PATH)
|
43 |
+
snapshot_download(
|
44 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
45 |
+
)
|
46 |
+
except Exception:
|
47 |
+
restart_space()
|
48 |
+
try:
|
49 |
+
print(EVAL_RESULTS_PATH)
|
50 |
+
snapshot_download(
|
51 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
52 |
+
)
|
53 |
+
except Exception:
|
54 |
+
restart_space()
|
55 |
+
|
56 |
+
|
57 |
+
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
58 |
+
|
59 |
+
(
|
60 |
+
finished_eval_queue_df,
|
61 |
+
running_eval_queue_df,
|
62 |
+
pending_eval_queue_df,
|
63 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
64 |
+
|
65 |
+
def init_leaderboard(dataframe):
|
66 |
+
print(dataframe)
|
67 |
+
if dataframe is None or dataframe.empty:
|
68 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
69 |
+
return Leaderboard(
|
70 |
+
value=dataframe,
|
71 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
72 |
+
select_columns=SelectColumns(
|
73 |
+
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
74 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
75 |
+
label="Select Columns to Display:",
|
76 |
+
),
|
77 |
+
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
78 |
+
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
79 |
+
filter_columns=[
|
80 |
+
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
81 |
+
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
82 |
+
ColumnFilter(
|
83 |
+
AutoEvalColumn.params.name,
|
84 |
+
type="slider",
|
85 |
+
min=0.01,
|
86 |
+
max=150,
|
87 |
+
label="Select the number of parameters (B)",
|
88 |
+
),
|
89 |
+
ColumnFilter(
|
90 |
+
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
91 |
+
),
|
92 |
+
],
|
93 |
+
bool_checkboxgroup_label="Hide models",
|
94 |
+
interactive=False,
|
95 |
+
)
|
96 |
+
|
97 |
+
|
98 |
+
def init_leaderboard2(dataframe, default_selection=None, hidden_columns=None):
|
99 |
+
|
100 |
+
print("entrato===============================================")
|
101 |
+
|
102 |
+
if dataframe is None or dataframe.empty:
|
103 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
104 |
+
return Leaderboard(
|
105 |
+
value=dataframe,
|
106 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
107 |
+
select_columns=SelectColumns(
|
108 |
+
default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
109 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
110 |
+
label="Select Columns to Display:",
|
111 |
+
),
|
112 |
+
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
113 |
+
hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],
|
114 |
+
filter_columns=[
|
115 |
+
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
116 |
+
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
117 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0.01, max=150, label="Select the number of parameters (B)"),
|
118 |
+
ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
|
119 |
+
],
|
120 |
+
bool_checkboxgroup_label="Hide models",
|
121 |
+
interactive=False,
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
demo = gr.Blocks(css=custom_css)
|
126 |
+
with demo:
|
127 |
+
gr.HTML(TITLE)
|
128 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
129 |
+
|
130 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
131 |
+
with gr.TabItem("🏅 EVALITA-LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
132 |
+
#leaderboard = init_leaderboard(LEADERBOARD_DF)
|
133 |
+
|
134 |
+
leaderboard = init_leaderboard2(
|
135 |
+
LEADERBOARD_DF,
|
136 |
+
default_selection=['T', 'Model', "Average ⬆��", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
|
137 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
138 |
+
col not in ['T', 'Model', "Average ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL" ]]
|
139 |
+
)
|
140 |
+
|
141 |
+
|
142 |
+
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
143 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
144 |
+
|
145 |
+
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
146 |
+
with gr.Column():
|
147 |
+
with gr.Row():
|
148 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
149 |
+
|
150 |
+
with gr.Column():
|
151 |
+
with gr.Accordion(
|
152 |
+
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
153 |
+
open=False,
|
154 |
+
):
|
155 |
+
with gr.Row():
|
156 |
+
finished_eval_table = gr.components.Dataframe(
|
157 |
+
value=finished_eval_queue_df,
|
158 |
+
headers=EVAL_COLS,
|
159 |
+
datatype=EVAL_TYPES,
|
160 |
+
row_count=5,
|
161 |
+
)
|
162 |
+
with gr.Accordion(
|
163 |
+
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
164 |
+
open=False,
|
165 |
+
):
|
166 |
+
with gr.Row():
|
167 |
+
running_eval_table = gr.components.Dataframe(
|
168 |
+
value=running_eval_queue_df,
|
169 |
+
headers=EVAL_COLS,
|
170 |
+
datatype=EVAL_TYPES,
|
171 |
+
row_count=5,
|
172 |
+
)
|
173 |
+
|
174 |
+
with gr.Accordion(
|
175 |
+
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
176 |
+
open=False,
|
177 |
+
):
|
178 |
+
with gr.Row():
|
179 |
+
pending_eval_table = gr.components.Dataframe(
|
180 |
+
value=pending_eval_queue_df,
|
181 |
+
headers=EVAL_COLS,
|
182 |
+
datatype=EVAL_TYPES,
|
183 |
+
row_count=5,
|
184 |
+
)
|
185 |
+
with gr.Row():
|
186 |
+
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
187 |
+
|
188 |
+
with gr.Row():
|
189 |
+
with gr.Column():
|
190 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
191 |
+
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
192 |
+
model_type = gr.Dropdown(
|
193 |
+
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
194 |
+
label="Model type",
|
195 |
+
multiselect=False,
|
196 |
+
value=None,
|
197 |
+
interactive=True,
|
198 |
+
)
|
199 |
+
|
200 |
+
with gr.Column():
|
201 |
+
precision = gr.Dropdown(
|
202 |
+
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
203 |
+
label="Precision",
|
204 |
+
multiselect=False,
|
205 |
+
value="float16",
|
206 |
+
interactive=True,
|
207 |
+
)
|
208 |
+
weight_type = gr.Dropdown(
|
209 |
+
choices=[i.value.name for i in WeightType],
|
210 |
+
label="Weights type",
|
211 |
+
multiselect=False,
|
212 |
+
value="Original",
|
213 |
+
interactive=True,
|
214 |
+
)
|
215 |
+
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
216 |
+
|
217 |
+
submit_button = gr.Button("Submit Eval")
|
218 |
+
submission_result = gr.Markdown()
|
219 |
+
submit_button.click(
|
220 |
+
add_new_eval,
|
221 |
+
[
|
222 |
+
model_name_textbox,
|
223 |
+
base_model_name_textbox,
|
224 |
+
revision_name_textbox,
|
225 |
+
precision,
|
226 |
+
weight_type,
|
227 |
+
model_type,
|
228 |
+
],
|
229 |
+
submission_result,
|
230 |
+
)
|
231 |
+
|
232 |
+
|
233 |
+
with gr.TabItem("TE", elem_id="llm-benchmark-tab-table", id=4):
|
234 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
235 |
+
#leaderboard = init_leaderboard(LEADERBOARD_DF)
|
236 |
+
|
237 |
+
LEADERBOARD_DF_TE = LEADERBOARD_DF.rename(columns={"TE Prompt Average": "Prompt Average",
|
238 |
+
"TE Best Prompt": "Best Prompt",
|
239 |
+
"TE Best Prompt Id": "Best Prompt Id",
|
240 |
+
"TE": "Combined Performance"})
|
241 |
+
|
242 |
+
leaderboard = init_leaderboard2(
|
243 |
+
LEADERBOARD_DF_TE,
|
244 |
+
default_selection=['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'],
|
245 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
246 |
+
col not in ['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']]
|
247 |
+
)
|
248 |
+
|
249 |
+
|
250 |
+
with gr.TabItem("SA", elem_id="llm-benchmark-tab-table", id=5):
|
251 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
252 |
+
|
253 |
+
LEADERBOARD_DF_SA = LEADERBOARD_DF.rename(columns={"SA Prompt Average": "Prompt Average",
|
254 |
+
"SA Best Prompt": "Best Prompt",
|
255 |
+
"SA Best Prompt Id": "Best Prompt Id",
|
256 |
+
"SA": "Combined Performance"})
|
257 |
+
|
258 |
+
leaderboard = init_leaderboard2(
|
259 |
+
LEADERBOARD_DF_SA,
|
260 |
+
default_selection=['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt',
|
261 |
+
'Best Prompt Id'],
|
262 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
263 |
+
col not in ['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt',
|
264 |
+
'Best Prompt Id']]
|
265 |
+
)
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
with gr.TabItem("HS", elem_id="llm-benchmark-tab-table", id=6):
|
271 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
272 |
+
|
273 |
+
LEADERBOARD_DF_HS = LEADERBOARD_DF.rename(columns={"HS Prompt Average": "Prompt Average",
|
274 |
+
"HS Best Prompt": "Best Prompt",
|
275 |
+
"HS Best Prompt Id": "Best Prompt Id",
|
276 |
+
"HS": "Combined Performance"})
|
277 |
+
|
278 |
+
leaderboard = init_leaderboard2(
|
279 |
+
LEADERBOARD_DF_HS,
|
280 |
+
default_selection=['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt',
|
281 |
+
'Best Prompt Id'],
|
282 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
283 |
+
col not in ['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt',
|
284 |
+
'Best Prompt Id']]
|
285 |
+
)
|
286 |
+
|
287 |
+
|
288 |
+
|
289 |
+
with gr.TabItem("AT", elem_id="llm-benchmark-tab-table", id=7):
|
290 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
291 |
+
|
292 |
+
with gr.TabItem("WIC", elem_id="llm-benchmark-tab-table", id=8):
|
293 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
294 |
+
|
295 |
+
with gr.TabItem("FAQ", elem_id="llm-benchmark-tab-table", id=9):
|
296 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
297 |
+
|
298 |
+
with gr.TabItem("LS", elem_id="llm-benchmark-tab-table", id=10):
|
299 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
300 |
+
|
301 |
+
with gr.TabItem("SU", elem_id="llm-benchmark-tab-table", id=11):
|
302 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
303 |
+
|
304 |
+
with gr.TabItem("NER", elem_id="llm-benchmark-tab-table", id=12):
|
305 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
306 |
+
|
307 |
+
with gr.TabItem("REL", elem_id="llm-benchmark-tab-table", id=13):
|
308 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
309 |
+
|
310 |
+
|
311 |
+
with gr.Row():
|
312 |
+
with gr.Accordion("📙 Citation", open=False):
|
313 |
+
citation_button = gr.Textbox(
|
314 |
+
value=CITATION_BUTTON_TEXT,
|
315 |
+
label=CITATION_BUTTON_LABEL,
|
316 |
+
lines=20,
|
317 |
+
elem_id="citation-button",
|
318 |
+
show_copy_button=True,
|
319 |
+
)
|
320 |
+
|
321 |
+
scheduler = BackgroundScheduler()
|
322 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
323 |
+
scheduler.start()
|
324 |
+
demo.queue(default_concurrency_limit=40).launch()
|
app2.py → example_app2.py
RENAMED
@@ -8,7 +8,7 @@ from src.about import (
|
|
8 |
CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT,
|
9 |
INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
|
10 |
)
|
11 |
-
from src.tasks import
|
12 |
from src.display.css_html_js import custom_css
|
13 |
from src.display.utils import (
|
14 |
BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn,
|
@@ -19,6 +19,53 @@ from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
19 |
from src.submission.submit import add_new_eval
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def restart_space():
|
23 |
"""Restart the Hugging Face space."""
|
24 |
API.restart_space(repo_id=REPO_ID)
|
@@ -59,10 +106,11 @@ def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
|
59 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
60 |
hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],
|
61 |
filter_columns=[
|
62 |
-
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
63 |
-
ColumnFilter(AutoEvalColumn.
|
|
|
64 |
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0.01, max=150, label="Select the number of parameters (B)"),
|
65 |
-
ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
|
66 |
],
|
67 |
bool_checkboxgroup_label="Hide models",
|
68 |
interactive=False,
|
@@ -89,15 +137,16 @@ with demo:
|
|
89 |
with gr.TabItem("🏅 EVALITA-LLM Benchmark", elem_id="llm-benchmark-tab-table"):
|
90 |
leaderboard = init_leaderboard(
|
91 |
LEADERBOARD_DF,
|
92 |
-
default_selection=['
|
93 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in
|
94 |
-
['
|
95 |
)
|
96 |
|
97 |
# About tab
|
98 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table"):
|
99 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
100 |
|
|
|
101 |
# Submission tab
|
102 |
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table"):
|
103 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
@@ -129,16 +178,30 @@ with demo:
|
|
129 |
[model_name_textbox, base_model_name_textbox, revision_name_textbox, precision, weight_type, model_type],
|
130 |
submission_result,
|
131 |
)
|
|
|
132 |
|
133 |
# Task-specific leaderboards
|
134 |
for task in ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]:
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
leaderboard = init_leaderboard(
|
138 |
prepare_leaderboard_df(LEADERBOARD_DF, task),
|
139 |
-
default_selection=['
|
140 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in
|
141 |
-
['
|
142 |
)
|
143 |
|
144 |
# Citation section
|
|
|
8 |
CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT,
|
9 |
INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
|
10 |
)
|
11 |
+
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
|
12 |
from src.display.css_html_js import custom_css
|
13 |
from src.display.utils import (
|
14 |
BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn,
|
|
|
19 |
from src.submission.submit import add_new_eval
|
20 |
|
21 |
|
22 |
+
|
23 |
+
|
24 |
+
# Define the task icons and names
|
25 |
+
TASK_ICONS = {
|
26 |
+
"TE": "📊", # Textual Entailment
|
27 |
+
"SA": "😃", # Sentiment Analysis
|
28 |
+
"HS": "⚠️", # Hate Speech
|
29 |
+
"AT": "🏥", # Admission Test
|
30 |
+
"WIC": "🔤", # Word in Context
|
31 |
+
"FAQ": "❓", # Frequently Asked Questions
|
32 |
+
"LS": "🔄", # Lexical Substitution
|
33 |
+
"SU": "📝", # Summarization
|
34 |
+
"NER": "🏷️", # Named Entity Recognition
|
35 |
+
"REL": "🔗", # Relation Extraction
|
36 |
+
}
|
37 |
+
|
38 |
+
TASK_NAMES = {
|
39 |
+
"TE": "Textual Entailment",
|
40 |
+
"SA": "Sentiment Analysis",
|
41 |
+
"HS": "Hate Speech",
|
42 |
+
"AT": "Admission Test",
|
43 |
+
"WIC": "Word in Context",
|
44 |
+
"FAQ": "Frequently Asked Questions",
|
45 |
+
"LS": "Lexical Substitution",
|
46 |
+
"SU": "Summarization",
|
47 |
+
"NER": "Named Entity Recognition",
|
48 |
+
"REL": "Relation Extraction",
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
# Tooltip descriptions for each task
|
53 |
+
TASK_TOOLTIPS = {
|
54 |
+
"TE": "Identify logical relationships between two text segments.",
|
55 |
+
"SA": "Classify the sentiment (positive, negative, neutral) of a text.",
|
56 |
+
"HS": "Detect hate speech in a text.",
|
57 |
+
"AT": "Classify whether a clinical statement pertains to an admission test.",
|
58 |
+
"WIC": "Identify words in context and their meaning.",
|
59 |
+
"FAQ": "Answer frequently asked questions based on given text.",
|
60 |
+
"LS": "Identify alternative words in a given context.",
|
61 |
+
"SU": "Summarize long text into a shorter version.",
|
62 |
+
"NER": "Identify named entities (e.g., persons, locations, organizations) in text.",
|
63 |
+
"REL": "Extract and link laboratory test results to the respective tests in clinical narratives.",
|
64 |
+
}
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
def restart_space():
|
70 |
"""Restart the Hugging Face space."""
|
71 |
API.restart_space(repo_id=REPO_ID)
|
|
|
106 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
107 |
hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],
|
108 |
filter_columns=[
|
109 |
+
#ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
110 |
+
ColumnFilter(AutoEvalColumn.fewshot_type.name, type="checkboxgroup", label="Few-Shot Learning (FS)"),
|
111 |
+
#ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
112 |
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0.01, max=150, label="Select the number of parameters (B)"),
|
113 |
+
#ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
|
114 |
],
|
115 |
bool_checkboxgroup_label="Hide models",
|
116 |
interactive=False,
|
|
|
137 |
with gr.TabItem("🏅 EVALITA-LLM Benchmark", elem_id="llm-benchmark-tab-table"):
|
138 |
leaderboard = init_leaderboard(
|
139 |
LEADERBOARD_DF,
|
140 |
+
default_selection=['FS', 'Model', "Avg. Combined Performance ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
|
141 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in
|
142 |
+
['FS', 'Model', "Avg. Combined Performance ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
|
143 |
)
|
144 |
|
145 |
# About tab
|
146 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table"):
|
147 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
148 |
|
149 |
+
'''
|
150 |
# Submission tab
|
151 |
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table"):
|
152 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
|
|
178 |
[model_name_textbox, base_model_name_textbox, revision_name_textbox, precision, weight_type, model_type],
|
179 |
submission_result,
|
180 |
)
|
181 |
+
'''
|
182 |
|
183 |
# Task-specific leaderboards
|
184 |
for task in ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]:
|
185 |
+
|
186 |
+
with gr.TabItem(f"{TASK_ICONS[task]}{task}", elem_id="llm-benchmark-tab-table"):
|
187 |
+
|
188 |
+
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
gr.Markdown(task_description, elem_classes="markdown-text")
|
194 |
+
|
195 |
+
|
196 |
+
gr.Markdown(MEASURE_DESCRIPTION, elem_classes="markdown-text")
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
leaderboard = init_leaderboard(
|
201 |
prepare_leaderboard_df(LEADERBOARD_DF, task),
|
202 |
+
default_selection=['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'],
|
203 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in
|
204 |
+
['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']]
|
205 |
)
|
206 |
|
207 |
# Citation section
|
get_model_info.py
CHANGED
@@ -35,20 +35,33 @@ for filename in os.listdir(input_folder):
|
|
35 |
# Ottieni le informazioni del modello da Hugging Face
|
36 |
model_info = api.model_info(model_name)
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# Costruisci il dizionario con i metadati richiesti
|
39 |
model_data = {
|
40 |
"model": model_name,
|
41 |
"base_model": model_info.config.get("architectures", [""])[0] if model_info.config else "",
|
42 |
"revision": model_info.sha,
|
43 |
-
"precision": "bfloat16", # Se disponibile, sostituire con un valore reale
|
44 |
#"weight_type": "Original",
|
45 |
#"status": "FINISHED",
|
46 |
"submitted_time": str(model_info.created_at),
|
47 |
-
"model_type": "pretrained",
|
48 |
#"likes": model_info.likes,
|
49 |
#"params": model_info.safetensors_size_in_bytes / 1e9 if model_info.safetensors_size_in_bytes else None,
|
50 |
#"license": model_info.license,
|
51 |
#"private": model_info.private,
|
|
|
|
|
52 |
}
|
53 |
|
54 |
# Separare il model_name in due parti: prima e dopo "/"
|
@@ -71,4 +84,4 @@ for filename in os.listdir(input_folder):
|
|
71 |
except Exception as e:
|
72 |
print(f"Error retrieving info for {model_name}: {e}")
|
73 |
|
74 |
-
print("Process
|
|
|
35 |
# Ottieni le informazioni del modello da Hugging Face
|
36 |
model_info = api.model_info(model_name)
|
37 |
|
38 |
+
# Calcola il numero di parametri in miliardi, se disponibile
|
39 |
+
num_params = None
|
40 |
+
if model_info.safetensors and "BF16" in model_info.safetensors.parameters:
|
41 |
+
num_params = model_info.safetensors.parameters["BF16"] / 1e9 # Converti in miliardi
|
42 |
+
|
43 |
+
# Estrai la lingua (può essere una lista, quindi prendiamo la prima se esiste)
|
44 |
+
# Estrai e concatena i linguaggi
|
45 |
+
language = "_".join(model_info.card_data.get("language", [])) if model_info.card_data else ""
|
46 |
+
|
47 |
+
print(model_info)
|
48 |
+
|
49 |
# Costruisci il dizionario con i metadati richiesti
|
50 |
model_data = {
|
51 |
"model": model_name,
|
52 |
"base_model": model_info.config.get("architectures", [""])[0] if model_info.config else "",
|
53 |
"revision": model_info.sha,
|
54 |
+
#"precision": "bfloat16", # Se disponibile, sostituire con un valore reale
|
55 |
#"weight_type": "Original",
|
56 |
#"status": "FINISHED",
|
57 |
"submitted_time": str(model_info.created_at),
|
58 |
+
#"model_type": "pretrained",
|
59 |
#"likes": model_info.likes,
|
60 |
#"params": model_info.safetensors_size_in_bytes / 1e9 if model_info.safetensors_size_in_bytes else None,
|
61 |
#"license": model_info.license,
|
62 |
#"private": model_info.private,
|
63 |
+
"num_params_billion": num_params, # Numero di parametri in miliardi
|
64 |
+
"language": language, # Lingua estratta
|
65 |
}
|
66 |
|
67 |
# Separare il model_name in due parti: prima e dopo "/"
|
|
|
84 |
except Exception as e:
|
85 |
print(f"Error retrieving info for {model_name}: {e}")
|
86 |
|
87 |
+
print("Process completed1.")
|
src/about.py
CHANGED
@@ -95,7 +95,9 @@ NUM_FEWSHOT = 0 # Change with your few shot
|
|
95 |
|
96 |
# Your leaderboard name
|
97 |
|
98 |
-
TITLE = """<h1 align="center" id="space-title">Work in progress!</h1>"""
|
|
|
|
|
99 |
|
100 |
|
101 |
# What does your leaderboard evaluate?
|
|
|
95 |
|
96 |
# Your leaderboard name
|
97 |
|
98 |
+
#TITLE = """<h1 align="center" id="space-title">Work in progress!</h1>"""
|
99 |
+
# Your leaderboard name
|
100 |
+
TITLE = """<h1 align="center" id="space-title">🚀 EVALITA-LLM Leaderboard 🚀</h1>"""
|
101 |
|
102 |
|
103 |
# What does your leaderboard evaluate?
|
src/display/utils.py
CHANGED
@@ -23,18 +23,26 @@ class ColumnContent:
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
-
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
|
|
|
|
|
|
27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
-
auto_eval_column_dict.append(["fewshot", ColumnContent, ColumnContent("Few-Shot", "str", True)])
|
|
|
|
|
|
|
|
|
29 |
#Scores
|
30 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("
|
31 |
for task in Tasks:
|
32 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
|
|
33 |
# Model information
|
34 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
35 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
36 |
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
37 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
38 |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
39 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
40 |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
@@ -50,7 +58,7 @@ class EvalQueueColumn: # Queue column
|
|
50 |
model = ColumnContent("model", "markdown", True)
|
51 |
revision = ColumnContent("revision", "str", True)
|
52 |
private = ColumnContent("private", "bool", True)
|
53 |
-
precision = ColumnContent("precision", "str", True)
|
54 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
55 |
status = ColumnContent("status", "str", True)
|
56 |
|
@@ -84,6 +92,34 @@ class ModelType(Enum):
|
|
84 |
return ModelType.IFT
|
85 |
return ModelType.Unknown
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
class WeightType(Enum):
|
88 |
Adapter = ModelDetails("Adapter")
|
89 |
Original = ModelDetails("Original")
|
@@ -133,4 +169,5 @@ new_column_dict.append(["ID", NewColumnContent, NewColumnContent("ID", "str", Tr
|
|
133 |
NewColumn = make_dataclass("NewColumn", new_column_dict, frozen=True)
|
134 |
|
135 |
# Includi questi nuovi valori nei COLS o in altre variabili di configurazione, se necessario
|
136 |
-
NEW_COLS = [c.name for c in fields(NewColumn) if not c.hidden]
|
|
|
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
25 |
# Init
|
26 |
+
#auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
+
|
28 |
+
auto_eval_column_dict.append(["fewshot_type", ColumnContent, ColumnContent("FS", "str", True, never_hidden=True)])
|
29 |
+
|
30 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
31 |
+
#auto_eval_column_dict.append(["fewshot", ColumnContent, ColumnContent("Few-Shot", "str", True)])
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
#Scores
|
37 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Avg. Combined Performance ⬆️", "number", True)])
|
38 |
for task in Tasks:
|
39 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
40 |
+
|
41 |
# Model information
|
42 |
+
#auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
43 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
44 |
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
45 |
+
#auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
46 |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
47 |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
48 |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
|
|
58 |
model = ColumnContent("model", "markdown", True)
|
59 |
revision = ColumnContent("revision", "str", True)
|
60 |
private = ColumnContent("private", "bool", True)
|
61 |
+
#precision = ColumnContent("precision", "str", True)
|
62 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
63 |
status = ColumnContent("status", "str", True)
|
64 |
|
|
|
92 |
return ModelType.IFT
|
93 |
return ModelType.Unknown
|
94 |
|
95 |
+
|
96 |
+
|
97 |
+
@dataclass
|
98 |
+
class FewShotDetails:
|
99 |
+
name: str
|
100 |
+
symbol: str = "" # emoji
|
101 |
+
|
102 |
+
class FewShotType(Enum):
|
103 |
+
ZS = FewShotDetails(name="zero-shot", symbol="0️⃣")
|
104 |
+
FS = FewShotDetails(name="5-few-shot", symbol="5️⃣")
|
105 |
+
Unknown = FewShotDetails(name="unknown", symbol="❓")
|
106 |
+
|
107 |
+
def to_str(self, separator=" "):
|
108 |
+
return f"{self.value.symbol}{separator}{self.value.name}"
|
109 |
+
|
110 |
+
@staticmethod
|
111 |
+
def from_num_fewshot(num_fewshot):
|
112 |
+
"""Determines FewShotType based on num_fewshot."""
|
113 |
+
if num_fewshot == 0:
|
114 |
+
return FewShotType.ZS
|
115 |
+
if num_fewshot == 5:
|
116 |
+
return FewShotType.FS
|
117 |
+
return FewShotType.Unknown
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
class WeightType(Enum):
|
124 |
Adapter = ModelDetails("Adapter")
|
125 |
Original = ModelDetails("Original")
|
|
|
169 |
NewColumn = make_dataclass("NewColumn", new_column_dict, frozen=True)
|
170 |
|
171 |
# Includi questi nuovi valori nei COLS o in altre variabili di configurazione, se necessario
|
172 |
+
NEW_COLS = [c.name for c in fields(NewColumn) if not c.hidden]
|
173 |
+
|
src/leaderboard/read_evals.py
CHANGED
@@ -1,259 +1,95 @@
|
|
1 |
-
import glob
|
2 |
-
import json
|
3 |
-
import math
|
4 |
-
import os
|
5 |
-
from dataclasses import dataclass
|
6 |
-
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
# Extract results available in this file (some results are split in several files)
|
98 |
-
results = {}
|
99 |
-
for task in Tasks:
|
100 |
-
task = task.value
|
101 |
-
|
102 |
-
'''
|
103 |
-
# We average all scores of a given metric (not all metrics are present in all files)
|
104 |
-
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
105 |
-
if accs.size == 0 or any([acc is None for acc in accs]):
|
106 |
-
continue
|
107 |
-
|
108 |
-
mean_acc = np.mean(accs) * 100.0
|
109 |
-
results[task.benchmark] = mean_acc
|
110 |
-
'''
|
111 |
-
|
112 |
-
for k, v in data["tasks"].items():
|
113 |
-
#if task.benchmark == k:
|
114 |
-
if task.benchmark[:-2] == k:
|
115 |
-
# print(k, "==================", v)
|
116 |
-
# results[task.benchmark] = v[task.cps]
|
117 |
-
|
118 |
-
#print(task.benchmark, v[task.metric])
|
119 |
-
|
120 |
-
if "Best Prompt Id" in task.col_name:
|
121 |
-
results[task.benchmark] = int(v[task.metric_type][-1:])
|
122 |
-
#print(results[task.benchmark],v[task.metric_type][-1:])
|
123 |
-
else:
|
124 |
-
results[task.benchmark] = v[task.metric_type]
|
125 |
-
|
126 |
-
|
127 |
-
#results[task.benchmark + "_" + task.metric] = 1.0
|
128 |
-
|
129 |
-
|
130 |
-
#results[task.benchmark] = v[task.accuracy]
|
131 |
-
# print("======", results[task.benchmark])
|
132 |
-
#results[task.benchmark] = 1.0
|
133 |
-
|
134 |
-
return self(
|
135 |
-
eval_name=result_key,
|
136 |
-
full_model=full_model,
|
137 |
-
org=org,
|
138 |
-
model=model,
|
139 |
-
results=results,
|
140 |
-
average_CPS=average_CPS,
|
141 |
-
fewshot=num_fewshot,
|
142 |
-
model_type=model_type,
|
143 |
-
precision=precision,
|
144 |
-
revision= config.get("model_sha", ""),
|
145 |
-
still_on_hub=still_on_hub,
|
146 |
-
architecture=architecture
|
147 |
-
)
|
148 |
-
|
149 |
-
def update_with_request_file(self, requests_path):
|
150 |
-
"""Finds the relevant request file for the current model and updates info with it"""
|
151 |
-
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
152 |
-
|
153 |
-
try:
|
154 |
-
with open(request_file, "r") as f:
|
155 |
-
request = json.load(f)
|
156 |
-
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
157 |
-
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
158 |
-
self.license = request.get("license", "?")
|
159 |
-
self.likes = request.get("likes", 0)
|
160 |
-
self.num_params = request.get("params", 0)
|
161 |
-
self.date = request.get("submitted_time", "")
|
162 |
-
except Exception:
|
163 |
-
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
|
164 |
-
|
165 |
-
def to_dict(self):
|
166 |
-
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
167 |
-
#average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
168 |
-
average = self.average_CPS
|
169 |
-
fewshot = self.fewshot
|
170 |
-
print("?????", fewshot)
|
171 |
-
data_dict = {
|
172 |
-
"eval_name": self.eval_name, # not a column, just a save name,
|
173 |
-
AutoEvalColumn.precision.name: self.precision.value.name,
|
174 |
-
#AutoEvalColumn.model_type.name: self.model_type.value.name,
|
175 |
-
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
176 |
-
|
177 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name if self.model_type else "Unknown",
|
178 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol if self.model_type else "Unknown",
|
179 |
-
|
180 |
-
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
181 |
-
AutoEvalColumn.architecture.name: self.architecture,
|
182 |
-
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
183 |
-
AutoEvalColumn.revision.name: self.revision,
|
184 |
-
AutoEvalColumn.average.name: average,
|
185 |
-
AutoEvalColumn.fewshot.name: fewshot,
|
186 |
-
AutoEvalColumn.license.name: self.license,
|
187 |
-
AutoEvalColumn.likes.name: self.likes,
|
188 |
-
AutoEvalColumn.params.name: self.num_params,
|
189 |
-
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
190 |
-
}
|
191 |
-
|
192 |
-
for task in Tasks:
|
193 |
-
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
194 |
-
|
195 |
-
return data_dict
|
196 |
-
|
197 |
-
|
198 |
-
def get_request_file_for_model(requests_path, model_name, precision):
|
199 |
-
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
200 |
-
request_files = os.path.join(
|
201 |
-
requests_path,
|
202 |
-
f"{model_name}_eval_request_*.json",
|
203 |
-
)
|
204 |
-
request_files = glob.glob(request_files)
|
205 |
-
|
206 |
-
# Select correct request file (precision)
|
207 |
-
request_file = ""
|
208 |
-
request_files = sorted(request_files, reverse=True)
|
209 |
-
for tmp_request_file in request_files:
|
210 |
-
with open(tmp_request_file, "r") as f:
|
211 |
-
req_content = json.load(f)
|
212 |
-
if (
|
213 |
-
req_content["status"] in ["FINISHED"]
|
214 |
-
and req_content["precision"] == precision.split(".")[-1]
|
215 |
-
):
|
216 |
-
request_file = tmp_request_file
|
217 |
-
return request_file
|
218 |
-
|
219 |
-
|
220 |
-
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
221 |
-
"""From the path of the results folder root, extract all needed info for results"""
|
222 |
-
model_result_filepaths = []
|
223 |
-
|
224 |
-
for root, _, files in os.walk(results_path):
|
225 |
-
# We should only have json files in model results
|
226 |
-
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
227 |
-
continue
|
228 |
-
|
229 |
-
# Sort the files by date
|
230 |
-
try:
|
231 |
-
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
232 |
-
except dateutil.parser._parser.ParserError:
|
233 |
-
files = [files[-1]]
|
234 |
-
|
235 |
-
for file in files:
|
236 |
-
model_result_filepaths.append(os.path.join(root, file))
|
237 |
-
|
238 |
-
eval_results = {}
|
239 |
-
for model_result_filepath in model_result_filepaths:
|
240 |
-
# Creation of result
|
241 |
-
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
242 |
-
#eval_result.update_with_request_file(requests_path)
|
243 |
-
|
244 |
-
# Store results of same eval together
|
245 |
-
eval_name = eval_result.eval_name
|
246 |
-
if eval_name in eval_results.keys():
|
247 |
-
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
248 |
-
else:
|
249 |
-
eval_results[eval_name] = eval_result
|
250 |
-
|
251 |
-
results = []
|
252 |
-
for v in eval_results.values():
|
253 |
-
try:
|
254 |
-
v.to_dict() # we test if the dict version is complete
|
255 |
-
results.append(v)
|
256 |
-
except KeyError: # not all eval values present
|
257 |
-
continue
|
258 |
-
|
259 |
-
return results
|
|
|
1 |
+
import glob
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from src.display.formatting import make_clickable_model
|
7 |
+
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, FewShotType
|
8 |
+
from src.submission.check_validity import is_model_on_hub
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class EvalResult:
|
12 |
+
eval_name: str
|
13 |
+
full_model: str
|
14 |
+
org: str
|
15 |
+
model: str
|
16 |
+
revision: str
|
17 |
+
results: dict
|
18 |
+
average_CPS: str
|
19 |
+
fewshot: int
|
20 |
+
fewshot_type: FewShotType = FewShotType.Unknown
|
21 |
+
weight_type: WeightType = WeightType.Original
|
22 |
+
architecture: str = "Unknown"
|
23 |
+
license: str = "?"
|
24 |
+
likes: int = 0
|
25 |
+
num_params: int = 0
|
26 |
+
date: str = ""
|
27 |
+
still_on_hub: bool = False
|
28 |
+
|
29 |
+
@classmethod
|
30 |
+
def init_from_json_file(cls, json_filepath):
|
31 |
+
with open(json_filepath) as fp:
|
32 |
+
data = json.load(fp)
|
33 |
+
|
34 |
+
config = data.get("config")
|
35 |
+
average_CPS = f"{data.get('average_CPS'):.2f}"
|
36 |
+
|
37 |
+
num_fewshot = int(config.get("num_fewshot", 0))
|
38 |
+
fewshot_type = FewShotType.from_num_fewshot(num_fewshot)
|
39 |
+
|
40 |
+
model_type = ModelType.from_str(config.get("model_type")) if config.get("model_type") else None
|
41 |
+
num_params = math.ceil(config.get("num_params_billion", 0)) if config.get("num_params_billion") else 0
|
42 |
+
|
43 |
+
org_and_model = config.get("model_name", "").split("/", 1)
|
44 |
+
org, model = (org_and_model if len(org_and_model) == 2 else (None, org_and_model[0]))
|
45 |
+
|
46 |
+
full_model = "/".join([org, model] if org else [model])
|
47 |
+
still_on_hub, _, model_config = is_model_on_hub(full_model, config.get("model_sha", "main"))
|
48 |
+
|
49 |
+
architecture = ";".join(getattr(model_config, "architectures", [])) if model_config else "?"
|
50 |
+
|
51 |
+
results = {
|
52 |
+
task.value.benchmark: f"{data['tasks'].get(task.value.benchmark, {}).get(task.metric_type, 0):.2f}"
|
53 |
+
for task in Tasks
|
54 |
+
}
|
55 |
+
|
56 |
+
return cls(
|
57 |
+
eval_name=f"{model}_{num_fewshot}",
|
58 |
+
full_model=full_model,
|
59 |
+
org=org,
|
60 |
+
model=model,
|
61 |
+
results=results,
|
62 |
+
average_CPS=average_CPS,
|
63 |
+
fewshot=fewshot_type,
|
64 |
+
fewshot_type=fewshot_type,
|
65 |
+
revision=config.get("model_sha", ""),
|
66 |
+
still_on_hub=still_on_hub,
|
67 |
+
architecture=architecture,
|
68 |
+
num_params=num_params
|
69 |
+
)
|
70 |
+
|
71 |
+
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
72 |
+
model_result_filepaths = [
|
73 |
+
os.path.join(root, file)
|
74 |
+
for root, _, files in os.walk(results_path)
|
75 |
+
for file in sorted(files, key=lambda x: x.split("_")[-1], reverse=True) if file.endswith(".json")
|
76 |
+
]
|
77 |
+
|
78 |
+
eval_results = {}
|
79 |
+
for model_result_filepath in model_result_filepaths:
|
80 |
+
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
81 |
+
eval_name = eval_result.eval_name
|
82 |
+
if eval_name not in eval_results:
|
83 |
+
eval_results[eval_name] = eval_result
|
84 |
+
else:
|
85 |
+
eval_results[eval_name].results.update(eval_result.results)
|
86 |
+
|
87 |
+
results = []
|
88 |
+
for v in eval_results.values():
|
89 |
+
try:
|
90 |
+
v.to_dict() # Test if the dict version is complete
|
91 |
+
results.append(v)
|
92 |
+
except KeyError:
|
93 |
+
continue
|
94 |
+
|
95 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/leaderboard/read_evals_old.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
import dateutil
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
#from get_model_info import num_params
|
11 |
+
from src.display.formatting import make_clickable_model
|
12 |
+
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, FewShotType
|
13 |
+
from src.submission.check_validity import is_model_on_hub
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class EvalResult:
|
18 |
+
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
19 |
+
"""
|
20 |
+
eval_name: str # org_model_precision (uid)
|
21 |
+
full_model: str # org/model (path on hub)
|
22 |
+
org: str
|
23 |
+
model: str
|
24 |
+
revision: str # commit hash, "" if main
|
25 |
+
results: dict
|
26 |
+
average_CPS: str
|
27 |
+
fewshot: int
|
28 |
+
#fewshot_type: str
|
29 |
+
#precision: Precision = Precision.Unknown
|
30 |
+
#model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
31 |
+
fewshot_type: FewShotType = FewShotType.Unknown
|
32 |
+
weight_type: WeightType = WeightType.Original # Original or Adapter
|
33 |
+
architecture: str = "Unknown"
|
34 |
+
license: str = "?"
|
35 |
+
likes: int = 0
|
36 |
+
num_params: int = 0
|
37 |
+
date: str = "" # submission date of request file
|
38 |
+
still_on_hub: bool = False
|
39 |
+
|
40 |
+
@classmethod
|
41 |
+
def init_from_json_file(self, json_filepath):
|
42 |
+
"""Inits the result from the specific model result file"""
|
43 |
+
with open(json_filepath) as fp:
|
44 |
+
data = json.load(fp)
|
45 |
+
|
46 |
+
config = data.get("config")
|
47 |
+
|
48 |
+
average_CPS = f"{data.get('average_CPS'):.2f}"
|
49 |
+
|
50 |
+
num_fewshot = config.get("num_fewshot", 0) # Imposta il valore predefinito a 0
|
51 |
+
try:
|
52 |
+
num_fewshot = int(num_fewshot) # Converte in intero se possibile
|
53 |
+
except ValueError:
|
54 |
+
num_fewshot = 0 # Se la conversione fallisce, assegna 0
|
55 |
+
|
56 |
+
# Determine the few-shot type (ZS or FS) based on num_fewshot
|
57 |
+
fewshot_type = FewShotType.from_num_fewshot(num_fewshot) # Use the new
|
58 |
+
|
59 |
+
|
60 |
+
#precision = config.get("precision")
|
61 |
+
|
62 |
+
#print(precision)
|
63 |
+
|
64 |
+
#print(config, num_fewshot)
|
65 |
+
|
66 |
+
# Precision
|
67 |
+
#precision = Precision.from_str(config.get("model_dtype"))
|
68 |
+
|
69 |
+
model_type = config.get("model_type")
|
70 |
+
# Modifica: Convertire model_type in un oggetto Enum (se è un Enum)
|
71 |
+
model_type = ModelType.from_str(model_type) if model_type else None
|
72 |
+
|
73 |
+
#print("=====================", model_type, config.get("model_name"))
|
74 |
+
|
75 |
+
# Initialize num_params with a default value (e.g., 0)
|
76 |
+
num_params = int(0)
|
77 |
+
# Controlla se "num_params_billion" esiste in config e non è null
|
78 |
+
num_params_billion = config.get("num_params_billion")
|
79 |
+
if num_params_billion is not None:
|
80 |
+
num_params = math.ceil(num_params_billion)
|
81 |
+
|
82 |
+
print("^^^^^^^^^^^^^^^^^^^^^^^^^", num_params, config.get("num_params_billion"))
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
# Get model and org
|
87 |
+
org_and_model = config.get("model_name", config.get("model_args", None))
|
88 |
+
org_and_model = org_and_model.split("/", 1)
|
89 |
+
|
90 |
+
#print(precision.value.name)
|
91 |
+
|
92 |
+
if len(org_and_model) == 1:
|
93 |
+
org = None
|
94 |
+
model = org_and_model[0]
|
95 |
+
#result_key = f"{model}_{precision.value.name}"
|
96 |
+
result_key = f"{model}_{num_fewshot}"
|
97 |
+
else:
|
98 |
+
org = org_and_model[0]
|
99 |
+
model = org_and_model[1]
|
100 |
+
#result_key = f"{org}_{model}_{precision.value.name}"
|
101 |
+
result_key = f"{org}_{model}_{num_fewshot}"
|
102 |
+
full_model = "/".join(org_and_model)
|
103 |
+
|
104 |
+
still_on_hub, _, model_config = is_model_on_hub(
|
105 |
+
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
|
106 |
+
)
|
107 |
+
architecture = "?"
|
108 |
+
if model_config is not None:
|
109 |
+
architectures = getattr(model_config, "architectures", None)
|
110 |
+
if architectures:
|
111 |
+
architecture = ";".join(architectures)
|
112 |
+
|
113 |
+
# Extract results available in this file (some results are split in several files)
|
114 |
+
results = {}
|
115 |
+
for task in Tasks:
|
116 |
+
task = task.value
|
117 |
+
|
118 |
+
'''
|
119 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
120 |
+
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
121 |
+
if accs.size == 0 or any([acc is None for acc in accs]):
|
122 |
+
continue
|
123 |
+
|
124 |
+
mean_acc = np.mean(accs) * 100.0
|
125 |
+
results[task.benchmark] = mean_acc
|
126 |
+
'''
|
127 |
+
|
128 |
+
for k, v in data["tasks"].items():
|
129 |
+
#if task.benchmark == k:
|
130 |
+
if task.benchmark[:-2] == k:
|
131 |
+
# print(k, "==================", v)
|
132 |
+
# results[task.benchmark] = v[task.cps]
|
133 |
+
|
134 |
+
#print(task.benchmark, v[task.metric])
|
135 |
+
|
136 |
+
if "Best Prompt Id" in task.col_name:
|
137 |
+
results[task.benchmark] = int(v[task.metric_type][-1:])
|
138 |
+
#print(results[task.benchmark],v[task.metric_type][-1:])
|
139 |
+
else:
|
140 |
+
#results[task.benchmark] = round(v[task.metric_type], 2)
|
141 |
+
# Format the value to 2 decimal places (ensure it's always shown as xx.xx)
|
142 |
+
results[task.benchmark] = f"{v[task.metric_type]:.2f}" # Ensure two decimals for display
|
143 |
+
|
144 |
+
|
145 |
+
#results[task.benchmark + "_" + task.metric] = 1.0
|
146 |
+
|
147 |
+
|
148 |
+
#results[task.benchmark] = v[task.accuracy]
|
149 |
+
# print("======", results[task.benchmark])
|
150 |
+
#results[task.benchmark] = 1.0
|
151 |
+
|
152 |
+
return self(
|
153 |
+
eval_name=result_key,
|
154 |
+
full_model=full_model,
|
155 |
+
org=org,
|
156 |
+
model=model,
|
157 |
+
results=results,
|
158 |
+
average_CPS=average_CPS,
|
159 |
+
fewshot_type=fewshot_type, # Set the fewshot type (ZS or FS)
|
160 |
+
fewshot=num_fewshot,
|
161 |
+
#model_type=model_type,
|
162 |
+
#precision=precision,
|
163 |
+
revision= config.get("model_sha", ""),
|
164 |
+
still_on_hub=still_on_hub,
|
165 |
+
architecture=architecture,
|
166 |
+
num_params=num_params
|
167 |
+
)
|
168 |
+
|
169 |
+
'''
|
170 |
+
def update_with_request_file(self, requests_path):
|
171 |
+
"""Finds the relevant request file for the current model and updates info with it"""
|
172 |
+
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
|
173 |
+
|
174 |
+
try:
|
175 |
+
with open(request_file, "r") as f:
|
176 |
+
request = json.load(f)
|
177 |
+
self.model_type = ModelType.from_str(request.get("model_type", ""))
|
178 |
+
self.weight_type = WeightType[request.get("weight_type", "Original")]
|
179 |
+
self.license = request.get("license", "?")
|
180 |
+
self.likes = request.get("likes", 0)
|
181 |
+
self.num_params = request.get("params", 0)
|
182 |
+
self.date = request.get("submitted_time", "")
|
183 |
+
except Exception:
|
184 |
+
print(f"Could not find request file for {self.org}/{self.model} with precision
|
185 |
+
'''
|
186 |
+
|
187 |
+
def to_dict(self):
|
188 |
+
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
189 |
+
#average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
190 |
+
average = self.average_CPS
|
191 |
+
fewshot = self.fewshot
|
192 |
+
|
193 |
+
# Ottiene il simbolo di FewShotType in modo simile a ModelType
|
194 |
+
fewshot_type_symbol = (
|
195 |
+
self.fewshot_type.value.symbol if isinstance(self.fewshot_type, FewShotType) else "❓"
|
196 |
+
)
|
197 |
+
|
198 |
+
#("?????", fewshot)
|
199 |
+
data_dict = {
|
200 |
+
"eval_name": self.eval_name, # not a column, just a save name,
|
201 |
+
#AutoEvalColumn.precision.name: self.precision.value.name,
|
202 |
+
#AutoEvalColumn.model_type.name: self.model_type.value.name,
|
203 |
+
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
204 |
+
|
205 |
+
#AutoEvalColumn.model_type.name: self.model_type.value.name if self.model_type else "Unknown",
|
206 |
+
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol if self.model_type else "Unknown",
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
AutoEvalColumn.fewshot_type.name: fewshot_type_symbol, # Simbolo corretto per fewshot type
|
211 |
+
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
216 |
+
AutoEvalColumn.architecture.name: self.architecture,
|
217 |
+
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
218 |
+
AutoEvalColumn.revision.name: self.revision,
|
219 |
+
AutoEvalColumn.average.name: average,
|
220 |
+
#AutoEvalColumn.fewshot.name: fewshot,
|
221 |
+
AutoEvalColumn.license.name: self.license,
|
222 |
+
AutoEvalColumn.likes.name: self.likes,
|
223 |
+
AutoEvalColumn.params.name: self.num_params,
|
224 |
+
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
|
225 |
+
}
|
226 |
+
|
227 |
+
for task in Tasks:
|
228 |
+
data_dict[task.value.col_name] = self.results[task.value.benchmark]
|
229 |
+
|
230 |
+
return data_dict
|
231 |
+
|
232 |
+
'''
|
233 |
+
def get_request_file_for_model(requests_path, model_name, precision):
|
234 |
+
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
235 |
+
request_files = os.path.join(
|
236 |
+
requests_path,
|
237 |
+
f"{model_name}_eval_request_*.json",
|
238 |
+
)
|
239 |
+
request_files = glob.glob(request_files)
|
240 |
+
|
241 |
+
# Select correct request file (precision)
|
242 |
+
request_file = ""
|
243 |
+
request_files = sorted(request_files, reverse=True)
|
244 |
+
for tmp_request_file in request_files:
|
245 |
+
with open(tmp_request_file, "r") as f:
|
246 |
+
req_content = json.load(f)
|
247 |
+
if (
|
248 |
+
req_content["status"] in ["FINISHED"]
|
249 |
+
and req_content["precision"] == precision.split(".")[-1]
|
250 |
+
):
|
251 |
+
request_file = tmp_request_file
|
252 |
+
return request_file
|
253 |
+
'''
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
|
258 |
+
"""From the path of the results folder root, extract all needed info for results"""
|
259 |
+
model_result_filepaths = []
|
260 |
+
|
261 |
+
for root, _, files in os.walk(results_path):
|
262 |
+
# We should only have json files in model results
|
263 |
+
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
264 |
+
continue
|
265 |
+
|
266 |
+
# Sort the files by date
|
267 |
+
try:
|
268 |
+
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
|
269 |
+
except dateutil.parser._parser.ParserError:
|
270 |
+
files = [files[-1]]
|
271 |
+
|
272 |
+
for file in files:
|
273 |
+
model_result_filepaths.append(os.path.join(root, file))
|
274 |
+
|
275 |
+
eval_results = {}
|
276 |
+
for model_result_filepath in model_result_filepaths:
|
277 |
+
# Creation of result
|
278 |
+
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
279 |
+
#eval_result.update_with_request_file(requests_path)
|
280 |
+
|
281 |
+
# Store results of same eval together
|
282 |
+
eval_name = eval_result.eval_name
|
283 |
+
if eval_name in eval_results.keys():
|
284 |
+
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
285 |
+
else:
|
286 |
+
eval_results[eval_name] = eval_result
|
287 |
+
|
288 |
+
results = []
|
289 |
+
for v in eval_results.values():
|
290 |
+
try:
|
291 |
+
v.to_dict() # we test if the dict version is complete
|
292 |
+
results.append(v)
|
293 |
+
except KeyError: # not all eval values present
|
294 |
+
continue
|
295 |
+
|
296 |
+
return results
|
src/populate.py
CHANGED
@@ -5,7 +5,7 @@ import pandas as pd
|
|
5 |
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
8 |
-
from src.leaderboard.
|
9 |
|
10 |
|
11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
|
|
5 |
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
8 |
+
from src.leaderboard.read_evals_old import get_raw_eval_results
|
9 |
|
10 |
|
11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
src/submission/check_validity.py
CHANGED
@@ -64,7 +64,7 @@ def get_model_size(model_info: ModelInfo, precision: str):
|
|
64 |
try:
|
65 |
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
66 |
except (AttributeError, TypeError):
|
67 |
-
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in
|
68 |
|
69 |
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
70 |
model_size = size_factor * model_size
|
|
|
64 |
try:
|
65 |
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
66 |
except (AttributeError, TypeError):
|
67 |
+
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in example_app.py
|
68 |
|
69 |
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
70 |
model_size = size_factor * model_size
|
src/tasks.py
CHANGED
@@ -8,7 +8,6 @@ class Task:
|
|
8 |
accuracy: str
|
9 |
col_name: str
|
10 |
|
11 |
-
|
12 |
NUM_FEWSHOT = 0 # Change with your few shot
|
13 |
# ---------------------------------------------------
|
14 |
|
@@ -20,12 +19,16 @@ INTRODUCTION_TEXT = """
|
|
20 |
Evalita-LLM, a new benchmark designed to evaluate Large Language Models (LLMs) on Italian tasks. The distinguishing and innovative features of Evalita-LLM are the following: (i) all tasks are native Italian, avoiding issues of translating from Italian and potential cultural biases; (ii) in addition to well established multiple-choice tasks, the benchmark includes generative tasks, enabling more natural interaction with LLMs; (iii) all tasks are evaluated against multiple prompts, this way mitigating the model sensitivity to specific prompts and allowing a fairer and objective evaluation.
|
21 |
"""
|
22 |
|
23 |
-
#
|
|
|
|
|
|
|
|
|
24 |
TE_DESCRIPTION = """### Textual Entailment (TE)
|
25 |
The input are two sentences: the text (T) and the hypothesis (H). The model has to determine whether the meaning of the hypothesis is logically entailed by the text.
|
26 |
|
27 |
| # | Prompt | Answer Choices |
|
28 |
-
|
29 |
| 1 | La frase: '{{text1}}' implica logicamente che la frase: '{{text2}}' sia vera? | ["Sì", "No"] |
|
30 |
| 2 | Devi risolvere un compito di inferenza semantica. La frase: '{{text1}}' implica logicamente che la frase: '{{text2}}' sia vera? | ["Sì", "No"] |
|
31 |
| 3 | La frase: '{{text1}}' implica logicamente che la frase: '{{text2}}' sia vera?\\nA: Sì\\nB: No\\nRisposta: | ["A", "B"] |
|
@@ -33,5 +36,137 @@ TE_DESCRIPTION = """### Textual Entailment (TE)
|
|
33 |
| 5 | Frase 1: '{{text1}}' Frase 2: '{{text2}}' | ["La frase 1 implica logicamente che la frase 2 sia vera", "La frase 1 non implica logicamente che la frase 2 sia vera"] |
|
34 |
| 6 | Devi risolvere un compito di inferenza semantica. Frase 1: '{{text1}}' Frase 2: '{{text2}}' | ["La frase 1 implica logicamente che la frase 2 sia vera", "La frase 1 non implica logicamente che la frase 2 sia vera"] |
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
accuracy: str
|
9 |
col_name: str
|
10 |
|
|
|
11 |
NUM_FEWSHOT = 0 # Change with your few shot
|
12 |
# ---------------------------------------------------
|
13 |
|
|
|
19 |
Evalita-LLM, a new benchmark designed to evaluate Large Language Models (LLMs) on Italian tasks. The distinguishing and innovative features of Evalita-LLM are the following: (i) all tasks are native Italian, avoiding issues of translating from Italian and potential cultural biases; (ii) in addition to well established multiple-choice tasks, the benchmark includes generative tasks, enabling more natural interaction with LLMs; (iii) all tasks are evaluated against multiple prompts, this way mitigating the model sensitivity to specific prompts and allowing a fairer and objective evaluation.
|
20 |
"""
|
21 |
|
22 |
+
#MEASURE_DESCRIPTION = "Combined Performance = (1 - (Best_Prompt - Prompt_Average) / 100) * Best_Prompt. Prompt Average = accuracy averaged over the six prompts. Best Prompt = accuracy of the best prompt. Prompt ID = ID of the best prompt (see legend above)"
|
23 |
+
MEASURE_DESCRIPTION = "**Combined Performance** = (1 - (**Best Prompt** - **Prompt Average**) / 100) * **Best Prompt**. **Prompt Average** = accuracy averaged over the assessed prompts. **Best Prompt** = accuracy of the best prompt. **Prompt ID** = ID of the best prompt (see legend above)."
|
24 |
+
|
25 |
+
|
26 |
+
# Tasks Descriptions
|
27 |
TE_DESCRIPTION = """### Textual Entailment (TE)
|
28 |
The input are two sentences: the text (T) and the hypothesis (H). The model has to determine whether the meaning of the hypothesis is logically entailed by the text.
|
29 |
|
30 |
| # | Prompt | Answer Choices |
|
31 |
+
|-----|------------|--------------|
|
32 |
| 1 | La frase: '{{text1}}' implica logicamente che la frase: '{{text2}}' sia vera? | ["Sì", "No"] |
|
33 |
| 2 | Devi risolvere un compito di inferenza semantica. La frase: '{{text1}}' implica logicamente che la frase: '{{text2}}' sia vera? | ["Sì", "No"] |
|
34 |
| 3 | La frase: '{{text1}}' implica logicamente che la frase: '{{text2}}' sia vera?\\nA: Sì\\nB: No\\nRisposta: | ["A", "B"] |
|
|
|
36 |
| 5 | Frase 1: '{{text1}}' Frase 2: '{{text2}}' | ["La frase 1 implica logicamente che la frase 2 sia vera", "La frase 1 non implica logicamente che la frase 2 sia vera"] |
|
37 |
| 6 | Devi risolvere un compito di inferenza semantica. Frase 1: '{{text1}}' Frase 2: '{{text2}}' | ["La frase 1 implica logicamente che la frase 2 sia vera", "La frase 1 non implica logicamente che la frase 2 sia vera"] |
|
38 |
|
39 |
+
"""
|
40 |
+
|
41 |
+
|
42 |
+
SA_DESCRIPTION = """### Sentiment Analysis (SA)
|
43 |
+
The input is a tweet. The model has to determine the sentiment polarity of the text, categorizing it into one of four classes: positive, negative, neutral, or mixed.
|
44 |
+
|
45 |
+
| # | Prompt | Answer Choices |
|
46 |
+
|-----|--------------------------------------------------------------------------------|-----------------------------|
|
47 |
+
| 1 | Qual è il sentiment espresso nel seguente tweet: '{{text}}'? | ["Positivo", "Negativo", "Neutro", "Misto"] |
|
48 |
+
| 2 | Devi svolgere un compito di analisi del sentiment. Qual è il sentiment espresso nel seguente tweet: '{{text}}'? | ["Positivo", "Negativo", "Neutro", "Misto"] |
|
49 |
+
| 3 | Qual è il sentiment espresso nel seguente tweet: '{{text}}'?\\nA: Positivo\\nB: Negativo\\nC: Neutro\\nD: Misto\\nRisposta: | ["A", "B", "C", "D"] |
|
50 |
+
| 4 | Devi svolgere un compito di analisi del sentiment. Qual è il sentiment espresso nel seguente tweet: '{{text}}'?\\nA: Positivo\\nB: Negativo\\nC: Neutro\\nD: \\nRisposta: | ["A", "B", "C", "D"] |
|
51 |
+
| 5 | Il seguente tweet: '{{text}}' esprime un sentiment | ["Positivo", "Negativo", "Neutro", "Misto"] |
|
52 |
+
| 6 | Devi svolgere un compito di analisi del sentiment. Il seguente tweet: '{{text}}' esprime un sentiment | ["Positivo", "Negativo", "Neutro", "Misto"] |
|
53 |
+
|
54 |
+
"""
|
55 |
+
|
56 |
+
|
57 |
+
HS_DESCRIPTION = """### Hate Speech (HS)
|
58 |
+
The input is a tweet. The model has to determine whether the text contains hateful content directed at specific target groups: immigrants, Muslims, or Roma. The output is a binary classification: hateful or not hateful.
|
59 |
+
|
60 |
+
| # | Prompt | Answer Choices |
|
61 |
+
|-----|--------------------------------------------------------------------------------|-------------------------------------------------|
|
62 |
+
| 1 | C'è incitamento all'odio nel seguente tweet: '{{full_text}}'? | ["Falso", "Vero"] |
|
63 |
+
| 2 | Devi svolgere un compito di identificazione di incitamento all'odio. C'è incitamento all'odio nel seguente tweet: '{{full_text}}'? | ["Falso", "Vero"] |
|
64 |
+
| 3 | C'è incitamento all'odio nel seguente tweet: '{{full_text}}'?\\nA: \\nB: Falso\\nRisposta: | ["B", "A"] |
|
65 |
+
| 4 | Devi svolgere un compito di identificazione di incitamento all'odio. C'è incitamento all'odio nel seguente tweet: '{{full_text}}'?\\nA: \\nB: \\nRisposta: | ["B", "A"] |
|
66 |
+
| 5 | Il tweet: '{{full_text}}' | ["non contiene incitamento all'odio", "contiene incitamento all'odio"] |
|
67 |
+
| 6 | Devi svolgere un compito di identificazione di incitamento all'odio. Il tweet: '{{full_text}}' | ["non contiene incitamento all'odio", "contiene incitamento all'odio"] |
|
68 |
+
|
69 |
+
"""
|
70 |
+
|
71 |
+
|
72 |
+
AT_DESCRIPTION = """### Admission Tests (AT)
|
73 |
+
The input is a multiple-choice question with five options (A-E) from Italian medical specialty entrance exams, and the model must identify the correct answer.
|
74 |
+
|
75 |
+
| # | Prompt | Answer Choices |
|
76 |
+
|-----|--------------------------------------------------------------------------------|-----------------------------|
|
77 |
+
| 1 | Dato il seguente quesito di medicina: '{{Question}}' qual è la risposta corretta? | ["A", "B", "C", "D", "E"] |
|
78 |
+
| 2 | Devi risolvere un compito di risposte a domande. Dato il seguente quesito di medicina: '{{Question}}' qual è la risposta corretta? | ["A", "B", "C", "D", "E"] |
|
79 |
+
| 3 | Dato il seguente quesito di medicina: '{{Question}}' qual è la risposta corretta?\\nA: {{A}}\\nB: {{B}}\\nC: {{C}}\\nD: {{D}}\\nE: {{E}}\\nRisposta: | ["A", "B", "C", "D", "E"] |
|
80 |
+
| 4 | Devi risolvere un compito a scelta multipla. Dato il seguente caso clinico: '{{background}}', qual è la risposta corretta alla domanda: '{{domanda}}'?\\nA: {{A}}\\nB: {{B}}\\nC: {{C}}\\nD: {{D}}\\nE: {{E}}\\nRisposta:Devi risolvere un compito a scelta multipla. Dato il seguente quesito di medicina: '{{Question}}' qual è la risposta corretta?\\nA: {{A}}\\nB: {{B}}\\nC: {{C}}\\nD: {{D}}\\nE: {{E}}\\nRisposta: | ["A", "B", "C", "D", "E"] |
|
81 |
+
| 5 | Dato il seguente caso clinico: '{{background}}'. La risposta corretta alla domanda: '{{domanda}}' èDato il seguente quesito di medicina '{{Question}}' la risposta corretta è: | ["A", "B", "C", "D", "E"] |
|
82 |
+
| 6 | Devi risolvere un compito di risposte a domande. Dato il seguente quesito di medicina '{{Question}}' la risposta corretta è: | ["A", "B", "C", "D", "E"] |
|
83 |
+
|
84 |
+
"""
|
85 |
+
|
86 |
+
WIC_DESCRIPTION = """### Word in Context (WIC)
|
87 |
+
The input consists of a word (w) and two sentences. The model has to determine whether the word w has the same meaning in both sentences. The output is a binary classification: 1 (same meaning) or 0 (different meaning).
|
88 |
+
|
89 |
+
| # | Prompt | Answer Choices |
|
90 |
+
|-----|--------------------------------------------------------------------------------|-------------------------------------------------|
|
91 |
+
| 1 | La parola: '{{sentence1[start1:end1]}}' nella frase: '{{sentence1}}' ha lo stesso significato della parola: '{{sentence2[start2:end2]}}' nella frase: '{{sentence2}}'? | ["No", "Sì"] |
|
92 |
+
| 2 | Devi determinare se una stessa parola usata in due frasi differenti ha lo stesso significato in entrambi i contesti. La parola: '{{sentence1[start1:end1]}}' nella frase: '{{sentence1}}' ha lo stesso significato della parola: '{{sentence2[start2:end2]}}' nella frase: '{{sentence2}}'? | ["No", "Sì"] |
|
93 |
+
| 3 | La parola: '{{sentence1[start1:end1]}}' nella frase: '{{sentence1}}' ha lo stesso significato della parola: '{{sentence2[start2:end2]}}' nella frase: '{{sentence2}}'?\\nA: Sì\\nB: No\\nRisposta: | ["B", "A"] |
|
94 |
+
| 4 | Devi determinare se una stessa parola usata in due frasi differenti ha lo stesso significato in entrambi i contesti. La parola: '{{sentence1[start1:end1]}}' nella frase: '{{sentence1}}' ha lo stesso significato della parola: '{{sentence2[start2:end2]}}' nella frase: '{{sentence2}}'?\\nA: \\nB: No\\nRisposta: | ["B", "A"] |
|
95 |
+
| 5 | La parola: '{{sentence1[start1:end1]}}' nella frase: '{{sentence1}}' e la parola: '{{sentence2[start2:end2]}}' nella frase: '{{sentence2}}' | ["non hanno lo stesso significato", "hanno lo stesso significato"] |
|
96 |
+
| 6 | Devi determinare se una stessa parola usata in due frasi differenti ha lo stesso significato in entrambi i contesti. La parola: '{{sentence1[start1:end1]}}' nella frase: '{{sentence1}}' e la parola: '{{sentence2[start2:end2]}}' nella frase: '{{sentence2}}' | ["non hanno lo stesso significato", "hanno lo stesso significato"] |
|
97 |
+
|
98 |
+
"""
|
99 |
+
|
100 |
+
|
101 |
+
FAQ_DESCRIPTION = """### Frequently Asked Questions & Question Answering (FAQ)
|
102 |
+
The input is a user query made by customers to the Acquedotto Pugliese service. The model must determine which of the 4 possible answers is the correct response to the question.
|
103 |
+
|
104 |
+
| # | Prompt | Answer Choices |
|
105 |
+
|-----|--------------------------------------------------------------------------------|-----------------------------|
|
106 |
+
| 1 | Rispondi alla seguente domanda: '{{question}}' | {{[A, B, C, D]}} |
|
107 |
+
| 2 | Devi risolvere un compito di risposte a domande. Rispondi alla seguente domanda: '{{question}}' | {{[A, B, C, D]}} |
|
108 |
+
| 3 | Rispondi alla seguente domanda: '{{question}}'\\nA: {{A}}\\nB: {{B}}\\nC: {{C}}\\nD: {{D}}\\nRisposta: | ["A", "B", "C", "D"] |
|
109 |
+
| 4 | Devi risolvere un compito a scelta multipla. Rispondi alla seguente domanda: '{{question}}'\\nA: {{A}}\\nB: {{B}}\\nC: {{C}}\\nD: {{D}}\\nRisposta: | ["A", "B", "C", "D"] |
|
110 |
+
| 5 | La risposta alla domanda: '{{question}}' è: | {{[A, B, C, D]}} |
|
111 |
+
| 6 | Devi risolvere un compito di risposte a domande. La risposta alla domanda: '{{question}}' è: | {{[A, B, C, D]}} |
|
112 |
+
|
113 |
+
"""
|
114 |
+
|
115 |
+
|
116 |
+
LS_DESCRIPTION = """### Lexical Substitution (LS)
|
117 |
+
The input is a sentence containing a target word (w). The model has to replace the target word w with its most suitable synonyms that are contextually relevant.
|
118 |
+
|
119 |
+
| # | Prompt |
|
120 |
+
|-----|--------------------------------------------------------------------------------|
|
121 |
+
| 1 | Trova 10 parole che possono sostituire la parola racchiusa tra i marcatori `<head>` nella seguente frase: '{{context}}', mantenendo lo stesso significato. Elenca i lemmi (forme base) di queste parole, separandoli con una virgola, ad esempio: lemma1, lemma2, lemma3, lemma4, lemma5. Non aggiungere commenti o altro testo. Risposta: |
|
122 |
+
| 2 | Devi risolvere un compito di sostituzione lessicale. Trova 10 parole che possono sostituire la parola racchiusa tra i marcatori `<head>` nella seguente frase: '{{context}}', mantenendo lo stesso significato. Elenca i lemmi (forme base) di queste parole, separandoli con una virgola, ad esempio: lemma1, lemma2, lemma3, lemma4, lemma5. Non aggiungere commenti o altro testo. Risposta: |
|
123 |
+
|
124 |
+
"""
|
125 |
+
|
126 |
+
|
127 |
+
SU_DESCRIPTION = """### Summarization (SUM)
|
128 |
+
The input is a news article. The model has to generate a concise summary of the input text, capturing the key information and main points.
|
129 |
+
|
130 |
+
| # | Prompt |
|
131 |
+
|-----|--------------------------------------------------------------------------------|
|
132 |
+
| 1 | Riassumi il seguente articolo di giornale: '{{source}}'\\nRiassunto: |
|
133 |
+
| 2 | Devi risolvere un compito di sintesi automatica del testo. Riassumi il seguente articolo di giornale: '{{source}}'\\nRiassunto: |
|
134 |
+
|
135 |
+
"""
|
136 |
+
|
137 |
+
|
138 |
+
NER_DESCRIPTION = """### Named Entity Recognition (NER)
|
139 |
+
The input is a sentence. The model has to identify and classify Named Entities into predefined categories such as person, organization, and location.
|
140 |
+
|
141 |
+
| # | Prompt |
|
142 |
+
|-----|--------------------------------------------------------------------------------|
|
143 |
+
| 1 | Estrai tutte le entità di tipo PER (persona), LOC (luogo) e ORG (organizzazione) dal testo seguente. Riporta ogni entità con il formato: Entità$Tipo, separando ciascuna coppia con ','. Se non ci sono entità da estrarre, rispondi con '&&NOENT&&'.\\nTesto: '{{text}}'\\nEntità: |
|
144 |
+
| 2 | Devi svolgere un compito di riconoscimento delle entità nei testi. Estrai tutte le entità di tipo PER (persona), LOC (luogo) e ORG (organizzazione) dal testo seguente. Riporta ogni entità con il formato: Entità$Tipo, separando ciascuna coppia con ','. Se non ci sono entità da estrarre, rispondi con '&&NOENT&&'.\\nTesto: '{{text}}'\\nEntità: |
|
145 |
+
|
146 |
+
"""
|
147 |
+
|
148 |
+
|
149 |
+
REL_DESCRIPTION = """### Relation Extraction (REL)
|
150 |
+
The task involves analyzing clinical text to extract relationships between laboratory test results (e.g., blood pressure) and the tests or procedures that produced them (e.g., blood pressure test).
|
151 |
+
|
152 |
+
| # | Prompt |
|
153 |
+
|-----|--------------------------------------------------------------------------------|
|
154 |
+
| 1 | Dato un documento medico devi estrarre tutte le misurazioni degli esami medici presenti. Riporta ogni relazione nel formato: misurazione$esame, separando ciascuna coppia con '%'. Se non ci sono relazioni da estrarre, rispondi con '&&NOREL&&'.\\nTesto: '{{text}}'\\nRelazioni: |
|
155 |
+
| 2 | Devi svolgere un compito di estrazione di relazioni da documenti medici. Dato un documento medico devi estrarre tutte le misurazioni degli esami medici presenti. Riporta ogni relazione nel formato: misurazione$esame, separando ciascuna coppia con '%'. Se non ci sono relazioni da estrarre, rispondi con '&&NOREL&&'.\\nTesto: '{{text}}'\\nRelazioni: |
|
156 |
+
|
157 |
+
"""
|
158 |
+
|
159 |
+
|
160 |
+
# Create a dictionary to map task names to their descriptions
|
161 |
+
TASK_DESCRIPTIONS = {
|
162 |
+
"TE": TE_DESCRIPTION,
|
163 |
+
"SA": SA_DESCRIPTION,
|
164 |
+
"HS": HS_DESCRIPTION,
|
165 |
+
"AT": AT_DESCRIPTION,
|
166 |
+
"WIC": WIC_DESCRIPTION,
|
167 |
+
"FAQ": FAQ_DESCRIPTION,
|
168 |
+
"LS": LS_DESCRIPTION,
|
169 |
+
"SU": SU_DESCRIPTION,
|
170 |
+
"NER": NER_DESCRIPTION,
|
171 |
+
"REL": REL_DESCRIPTION
|
172 |
+
}
|