File size: 9,803 Bytes
d1c3cb5
 
 
 
 
 
 
 
 
 
cae4d0f
d1c3cb5
 
 
 
 
 
 
 
 
 
cae4d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1c3cb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae4d0f
 
 
d1c3cb5
cae4d0f
d1c3cb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae4d0f
d1c3cb5
cae4d0f
d1c3cb5
 
 
 
 
 
cae4d0f
d1c3cb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae4d0f
d1c3cb5
 
 
cae4d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1c3cb5
 
cae4d0f
d1c3cb5
cae4d0f
d1c3cb5
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
)
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn,
    ModelType, fields, WeightType, Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval




# Define the task icons and names
TASK_ICONS = {
    "TE": "πŸ“Š",  # Textual Entailment
    "SA": "πŸ˜ƒ",  # Sentiment Analysis
    "HS": "⚠️",  # Hate Speech
    "AT": "πŸ₯",  # Admission Test
    "WIC": "πŸ”€",  # Word in Context
    "FAQ": "❓",  # Frequently Asked Questions
    "LS": "πŸ”„",  # Lexical Substitution
    "SU": "πŸ“",  # Summarization
    "NER": "🏷️",  # Named Entity Recognition
    "REL": "πŸ”—",  # Relation Extraction
}

TASK_NAMES = {
    "TE": "Textual Entailment",
    "SA": "Sentiment Analysis",
    "HS": "Hate Speech",
    "AT": "Admission Test",
    "WIC": "Word in Context",
    "FAQ": "Frequently Asked Questions",
    "LS": "Lexical Substitution",
    "SU": "Summarization",
    "NER": "Named Entity Recognition",
    "REL": "Relation Extraction",
}


# Tooltip descriptions for each task
TASK_TOOLTIPS = {
    "TE": "Identify logical relationships between two text segments.",
    "SA": "Classify the sentiment (positive, negative, neutral) of a text.",
    "HS": "Detect hate speech in a text.",
    "AT": "Classify whether a clinical statement pertains to an admission test.",
    "WIC": "Identify words in context and their meaning.",
    "FAQ": "Answer frequently asked questions based on given text.",
    "LS": "Identify alternative words in a given context.",
    "SU": "Summarize long text into a shorter version.",
    "NER": "Identify named entities (e.g., persons, locations, organizations) in text.",
    "REL": "Extract and link laboratory test results to the respective tests in clinical narratives.",
}




def restart_space():
    """Restart the Hugging Face space."""
    API.restart_space(repo_id=REPO_ID)


def download_snapshot(repo, local_dir):
    """Try to download a snapshot from the Hugging Face Hub, restarting space on failure."""
    try:
        print(f"Downloading from {repo} to {local_dir}...")
        snapshot_download(repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN)
    except Exception as e:
        print(f"Error downloading {repo}: {e}")
        restart_space()


# Space initialization
download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)

# Load leaderboard and evaluation queue data
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
    """Initialize a leaderboard with specific columns."""
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[
            #ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
            ColumnFilter(AutoEvalColumn.fewshot_type.name, type="checkboxgroup", label="Few-Shot Learning (FS)"),
            #ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
            ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0.01, max=150, label="Select the number of parameters (B)"),
            #ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


def prepare_leaderboard_df(df, task_prefix):
    """Rename columns for a specific task to a standard format."""
    return df.rename(columns={
        f"{task_prefix} Prompt Average": "Prompt Average",
        f"{task_prefix} Best Prompt": "Best Prompt",
        f"{task_prefix} Best Prompt Id": "Best Prompt Id",
        task_prefix: "Combined Performance"
    })


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # Main leaderboard tab
        with gr.TabItem("πŸ… EVALITA-LLM Benchmark", elem_id="llm-benchmark-tab-table"):
            leaderboard = init_leaderboard(
                LEADERBOARD_DF,
                default_selection=['FS', 'Model', "Avg. Combined Performance ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
                hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in
                                ['FS', 'Model', "Avg. Combined Performance ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
            )

        # About tab
        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table"):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        '''

        # Submission tab

        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table"):

            gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")



            for queue_name, queue_df in [

                ("βœ… Finished Evaluations", finished_eval_queue_df),

                ("πŸ”„ Running Evaluation Queue", running_eval_queue_df),

                ("⏳ Pending Evaluation Queue", pending_eval_queue_df)

            ]:

                with gr.Accordion(f"{queue_name} ({len(queue_df)})", open=False):

                    gr.components.Dataframe(value=queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5)



            gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():

                model_name_textbox = gr.Textbox(label="Model name")

                revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")

                model_type = gr.Dropdown(choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],

                                         label="Model type", multiselect=False, interactive=True)

                precision = gr.Dropdown(choices=[i.value.name for i in Precision if i != Precision.Unknown],

                                        label="Precision", multiselect=False, value="float16", interactive=True)

                weight_type = gr.Dropdown(choices=[i.value.name for i in WeightType],

                                          label="Weights type", multiselect=False, value="Original", interactive=True)

                base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")



            submit_button = gr.Button("Submit Eval")

            submission_result = gr.Markdown()

            submit_button.click(

                add_new_eval,

                [model_name_textbox, base_model_name_textbox, revision_name_textbox, precision, weight_type, model_type],

                submission_result,

            )

        '''

        # Task-specific leaderboards
        for task in ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]:

            with gr.TabItem(f"{TASK_ICONS[task]}{task}", elem_id="llm-benchmark-tab-table"):

                task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")




                gr.Markdown(task_description, elem_classes="markdown-text")


                gr.Markdown(MEASURE_DESCRIPTION, elem_classes="markdown-text")



                leaderboard = init_leaderboard(
                    prepare_leaderboard_df(LEADERBOARD_DF, task),
                    default_selection=['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'],
                    hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in
                                    ['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']]
                )

    # Citation section
    with gr.Accordion("πŸ“™ Citation", open=False):
        gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)

# Background job to restart space
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()

demo.queue(default_concurrency_limit=40).launch()