File size: 9,803 Bytes
d1c3cb5 cae4d0f d1c3cb5 cae4d0f d1c3cb5 cae4d0f d1c3cb5 cae4d0f d1c3cb5 cae4d0f d1c3cb5 cae4d0f d1c3cb5 cae4d0f d1c3cb5 cae4d0f d1c3cb5 cae4d0f d1c3cb5 cae4d0f d1c3cb5 cae4d0f d1c3cb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
)
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn,
ModelType, fields, WeightType, Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
# Define the task icons and names
TASK_ICONS = {
"TE": "π", # Textual Entailment
"SA": "π", # Sentiment Analysis
"HS": "β οΈ", # Hate Speech
"AT": "π₯", # Admission Test
"WIC": "π€", # Word in Context
"FAQ": "β", # Frequently Asked Questions
"LS": "π", # Lexical Substitution
"SU": "π", # Summarization
"NER": "π·οΈ", # Named Entity Recognition
"REL": "π", # Relation Extraction
}
TASK_NAMES = {
"TE": "Textual Entailment",
"SA": "Sentiment Analysis",
"HS": "Hate Speech",
"AT": "Admission Test",
"WIC": "Word in Context",
"FAQ": "Frequently Asked Questions",
"LS": "Lexical Substitution",
"SU": "Summarization",
"NER": "Named Entity Recognition",
"REL": "Relation Extraction",
}
# Tooltip descriptions for each task
TASK_TOOLTIPS = {
"TE": "Identify logical relationships between two text segments.",
"SA": "Classify the sentiment (positive, negative, neutral) of a text.",
"HS": "Detect hate speech in a text.",
"AT": "Classify whether a clinical statement pertains to an admission test.",
"WIC": "Identify words in context and their meaning.",
"FAQ": "Answer frequently asked questions based on given text.",
"LS": "Identify alternative words in a given context.",
"SU": "Summarize long text into a shorter version.",
"NER": "Identify named entities (e.g., persons, locations, organizations) in text.",
"REL": "Extract and link laboratory test results to the respective tests in clinical narratives.",
}
def restart_space():
"""Restart the Hugging Face space."""
API.restart_space(repo_id=REPO_ID)
def download_snapshot(repo, local_dir):
"""Try to download a snapshot from the Hugging Face Hub, restarting space on failure."""
try:
print(f"Downloading from {repo} to {local_dir}...")
snapshot_download(repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN)
except Exception as e:
print(f"Error downloading {repo}: {e}")
restart_space()
# Space initialization
download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
# Load leaderboard and evaluation queue data
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""Initialize a leaderboard with specific columns."""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
#ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(AutoEvalColumn.fewshot_type.name, type="checkboxgroup", label="Few-Shot Learning (FS)"),
#ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0.01, max=150, label="Select the number of parameters (B)"),
#ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def prepare_leaderboard_df(df, task_prefix):
"""Rename columns for a specific task to a standard format."""
return df.rename(columns={
f"{task_prefix} Prompt Average": "Prompt Average",
f"{task_prefix} Best Prompt": "Best Prompt",
f"{task_prefix} Best Prompt Id": "Best Prompt Id",
task_prefix: "Combined Performance"
})
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# Main leaderboard tab
with gr.TabItem("π
EVALITA-LLM Benchmark", elem_id="llm-benchmark-tab-table"):
leaderboard = init_leaderboard(
LEADERBOARD_DF,
default_selection=['FS', 'Model', "Avg. Combined Performance β¬οΈ", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in
['FS', 'Model', "Avg. Combined Performance β¬οΈ", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
)
# About tab
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table"):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
'''
# Submission tab
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table"):
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
for queue_name, queue_df in [
("β
Finished Evaluations", finished_eval_queue_df),
("π Running Evaluation Queue", running_eval_queue_df),
("β³ Pending Evaluation Queue", pending_eval_queue_df)
]:
with gr.Accordion(f"{queue_name} ({len(queue_df)})", open=False):
gr.components.Dataframe(value=queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5)
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type", multiselect=False, interactive=True)
precision = gr.Dropdown(choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision", multiselect=False, value="float16", interactive=True)
weight_type = gr.Dropdown(choices=[i.value.name for i in WeightType],
label="Weights type", multiselect=False, value="Original", interactive=True)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[model_name_textbox, base_model_name_textbox, revision_name_textbox, precision, weight_type, model_type],
submission_result,
)
'''
# Task-specific leaderboards
for task in ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]:
with gr.TabItem(f"{TASK_ICONS[task]}{task}", elem_id="llm-benchmark-tab-table"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
gr.Markdown(MEASURE_DESCRIPTION, elem_classes="markdown-text")
leaderboard = init_leaderboard(
prepare_leaderboard_df(LEADERBOARD_DF, task),
default_selection=['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in
['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']]
)
# Citation section
with gr.Accordion("π Citation", open=False):
gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)
# Background job to restart space
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |