Add new scripts for model processing and tasks management
Browse files- app.py +122 -2
- app2.py +153 -0
- get_model_info.py +2 -2
- src/about.py +125 -8
- src/display/utils.py +26 -0
- src/envs.py +9 -4
- src/leaderboard/read_evals.py +69 -6
app.py
CHANGED
@@ -12,6 +12,11 @@ from src.about import (
|
|
12 |
LLM_BENCHMARKS_TEXT,
|
13 |
TITLE,
|
14 |
)
|
|
|
|
|
|
|
|
|
|
|
15 |
from src.display.css_html_js import custom_css
|
16 |
from src.display.utils import (
|
17 |
BENCHMARK_COLS,
|
@@ -58,6 +63,7 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
|
|
58 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
|
60 |
def init_leaderboard(dataframe):
|
|
|
61 |
if dataframe is None or dataframe.empty:
|
62 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
63 |
return Leaderboard(
|
@@ -89,14 +95,49 @@ def init_leaderboard(dataframe):
|
|
89 |
)
|
90 |
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
demo = gr.Blocks(css=custom_css)
|
93 |
with demo:
|
94 |
gr.HTML(TITLE)
|
95 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
96 |
|
97 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
-
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
99 |
-
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
102 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
@@ -188,6 +229,85 @@ with demo:
|
|
188 |
submission_result,
|
189 |
)
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
with gr.Row():
|
192 |
with gr.Accordion("📙 Citation", open=False):
|
193 |
citation_button = gr.Textbox(
|
|
|
12 |
LLM_BENCHMARKS_TEXT,
|
13 |
TITLE,
|
14 |
)
|
15 |
+
|
16 |
+
from src.tasks import (
|
17 |
+
TE_DESCRIPTION,
|
18 |
+
)
|
19 |
+
|
20 |
from src.display.css_html_js import custom_css
|
21 |
from src.display.utils import (
|
22 |
BENCHMARK_COLS,
|
|
|
63 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
64 |
|
65 |
def init_leaderboard(dataframe):
|
66 |
+
print(dataframe)
|
67 |
if dataframe is None or dataframe.empty:
|
68 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
69 |
return Leaderboard(
|
|
|
95 |
)
|
96 |
|
97 |
|
98 |
+
def init_leaderboard2(dataframe, default_selection=None, hidden_columns=None):
|
99 |
+
|
100 |
+
print("entrato===============================================")
|
101 |
+
|
102 |
+
if dataframe is None or dataframe.empty:
|
103 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
104 |
+
return Leaderboard(
|
105 |
+
value=dataframe,
|
106 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
107 |
+
select_columns=SelectColumns(
|
108 |
+
default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
109 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
110 |
+
label="Select Columns to Display:",
|
111 |
+
),
|
112 |
+
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
113 |
+
hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],
|
114 |
+
filter_columns=[
|
115 |
+
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
116 |
+
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
117 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0.01, max=150, label="Select the number of parameters (B)"),
|
118 |
+
ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
|
119 |
+
],
|
120 |
+
bool_checkboxgroup_label="Hide models",
|
121 |
+
interactive=False,
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
demo = gr.Blocks(css=custom_css)
|
126 |
with demo:
|
127 |
gr.HTML(TITLE)
|
128 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
129 |
|
130 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
131 |
+
with gr.TabItem("🏅 EVALITA-LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
132 |
+
#leaderboard = init_leaderboard(LEADERBOARD_DF)
|
133 |
+
|
134 |
+
leaderboard = init_leaderboard2(
|
135 |
+
LEADERBOARD_DF,
|
136 |
+
default_selection=['T', 'Model', "Average ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
|
137 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
138 |
+
col not in ['T', 'Model', "Average ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL" ]]
|
139 |
+
)
|
140 |
+
|
141 |
|
142 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
143 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
229 |
submission_result,
|
230 |
)
|
231 |
|
232 |
+
|
233 |
+
with gr.TabItem("TE", elem_id="llm-benchmark-tab-table", id=4):
|
234 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
235 |
+
#leaderboard = init_leaderboard(LEADERBOARD_DF)
|
236 |
+
|
237 |
+
LEADERBOARD_DF_TE = LEADERBOARD_DF.rename(columns={"TE Prompt Average": "Prompt Average",
|
238 |
+
"TE Best Prompt": "Best Prompt",
|
239 |
+
"TE Best Prompt Id": "Best Prompt Id",
|
240 |
+
"TE": "Combined Performance"})
|
241 |
+
|
242 |
+
leaderboard = init_leaderboard2(
|
243 |
+
LEADERBOARD_DF_TE,
|
244 |
+
default_selection=['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'],
|
245 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
246 |
+
col not in ['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']]
|
247 |
+
)
|
248 |
+
|
249 |
+
|
250 |
+
with gr.TabItem("SA", elem_id="llm-benchmark-tab-table", id=5):
|
251 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
252 |
+
|
253 |
+
LEADERBOARD_DF_SA = LEADERBOARD_DF.rename(columns={"SA Prompt Average": "Prompt Average",
|
254 |
+
"SA Best Prompt": "Best Prompt",
|
255 |
+
"SA Best Prompt Id": "Best Prompt Id",
|
256 |
+
"SA": "Combined Performance"})
|
257 |
+
|
258 |
+
leaderboard = init_leaderboard2(
|
259 |
+
LEADERBOARD_DF_SA,
|
260 |
+
default_selection=['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt',
|
261 |
+
'Best Prompt Id'],
|
262 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
263 |
+
col not in ['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt',
|
264 |
+
'Best Prompt Id']]
|
265 |
+
)
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
with gr.TabItem("HS", elem_id="llm-benchmark-tab-table", id=6):
|
271 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
272 |
+
|
273 |
+
LEADERBOARD_DF_HS = LEADERBOARD_DF.rename(columns={"HS Prompt Average": "Prompt Average",
|
274 |
+
"HS Best Prompt": "Best Prompt",
|
275 |
+
"HS Best Prompt Id": "Best Prompt Id",
|
276 |
+
"HS": "Combined Performance"})
|
277 |
+
|
278 |
+
leaderboard = init_leaderboard2(
|
279 |
+
LEADERBOARD_DF_HS,
|
280 |
+
default_selection=['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt',
|
281 |
+
'Best Prompt Id'],
|
282 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if
|
283 |
+
col not in ['T', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt',
|
284 |
+
'Best Prompt Id']]
|
285 |
+
)
|
286 |
+
|
287 |
+
|
288 |
+
|
289 |
+
with gr.TabItem("AT", elem_id="llm-benchmark-tab-table", id=7):
|
290 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
291 |
+
|
292 |
+
with gr.TabItem("WIC", elem_id="llm-benchmark-tab-table", id=8):
|
293 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
294 |
+
|
295 |
+
with gr.TabItem("FAQ", elem_id="llm-benchmark-tab-table", id=9):
|
296 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
297 |
+
|
298 |
+
with gr.TabItem("LS", elem_id="llm-benchmark-tab-table", id=10):
|
299 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
300 |
+
|
301 |
+
with gr.TabItem("SU", elem_id="llm-benchmark-tab-table", id=11):
|
302 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
303 |
+
|
304 |
+
with gr.TabItem("NER", elem_id="llm-benchmark-tab-table", id=12):
|
305 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
306 |
+
|
307 |
+
with gr.TabItem("REL", elem_id="llm-benchmark-tab-table", id=13):
|
308 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
309 |
+
|
310 |
+
|
311 |
with gr.Row():
|
312 |
with gr.Accordion("📙 Citation", open=False):
|
313 |
citation_button = gr.Textbox(
|
app2.py
CHANGED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
+
import pandas as pd
|
4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
+
|
7 |
+
from src.about import (
|
8 |
+
CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT,
|
9 |
+
INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
|
10 |
+
)
|
11 |
+
from src.tasks import TE_DESCRIPTION
|
12 |
+
from src.display.css_html_js import custom_css
|
13 |
+
from src.display.utils import (
|
14 |
+
BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn,
|
15 |
+
ModelType, fields, WeightType, Precision
|
16 |
+
)
|
17 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
18 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
19 |
+
from src.submission.submit import add_new_eval
|
20 |
+
|
21 |
+
|
22 |
+
def restart_space():
|
23 |
+
"""Restart the Hugging Face space."""
|
24 |
+
API.restart_space(repo_id=REPO_ID)
|
25 |
+
|
26 |
+
|
27 |
+
def download_snapshot(repo, local_dir):
|
28 |
+
"""Try to download a snapshot from the Hugging Face Hub, restarting space on failure."""
|
29 |
+
try:
|
30 |
+
print(f"Downloading from {repo} to {local_dir}...")
|
31 |
+
snapshot_download(repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN)
|
32 |
+
except Exception as e:
|
33 |
+
print(f"Error downloading {repo}: {e}")
|
34 |
+
restart_space()
|
35 |
+
|
36 |
+
|
37 |
+
# Space initialization
|
38 |
+
download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
|
39 |
+
download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
|
40 |
+
|
41 |
+
# Load leaderboard and evaluation queue data
|
42 |
+
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
43 |
+
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
44 |
+
|
45 |
+
|
46 |
+
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
47 |
+
"""Initialize a leaderboard with specific columns."""
|
48 |
+
if dataframe is None or dataframe.empty:
|
49 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
50 |
+
|
51 |
+
return Leaderboard(
|
52 |
+
value=dataframe,
|
53 |
+
datatype=[c.type for c in fields(AutoEvalColumn)],
|
54 |
+
select_columns=SelectColumns(
|
55 |
+
default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
56 |
+
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
57 |
+
label="Select Columns to Display:",
|
58 |
+
),
|
59 |
+
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
60 |
+
hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],
|
61 |
+
filter_columns=[
|
62 |
+
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
|
63 |
+
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
64 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0.01, max=150, label="Select the number of parameters (B)"),
|
65 |
+
ColumnFilter(AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True),
|
66 |
+
],
|
67 |
+
bool_checkboxgroup_label="Hide models",
|
68 |
+
interactive=False,
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
def prepare_leaderboard_df(df, task_prefix):
|
73 |
+
"""Rename columns for a specific task to a standard format."""
|
74 |
+
return df.rename(columns={
|
75 |
+
f"{task_prefix} Prompt Average": "Prompt Average",
|
76 |
+
f"{task_prefix} Best Prompt": "Best Prompt",
|
77 |
+
f"{task_prefix} Best Prompt Id": "Best Prompt Id",
|
78 |
+
task_prefix: "Combined Performance"
|
79 |
+
})
|
80 |
+
|
81 |
+
|
82 |
+
demo = gr.Blocks(css=custom_css)
|
83 |
+
with demo:
|
84 |
+
gr.HTML(TITLE)
|
85 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
86 |
+
|
87 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
88 |
+
# Main leaderboard tab
|
89 |
+
with gr.TabItem("🏅 EVALITA-LLM Benchmark", elem_id="llm-benchmark-tab-table"):
|
90 |
+
leaderboard = init_leaderboard(
|
91 |
+
LEADERBOARD_DF,
|
92 |
+
default_selection=['T', 'Model', 'Few-Shot', "Average ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
|
93 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in
|
94 |
+
['T', 'Model', 'Few-Shot', "Average ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
|
95 |
+
)
|
96 |
+
|
97 |
+
# About tab
|
98 |
+
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table"):
|
99 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
100 |
+
|
101 |
+
# Submission tab
|
102 |
+
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table"):
|
103 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
104 |
+
|
105 |
+
for queue_name, queue_df in [
|
106 |
+
("✅ Finished Evaluations", finished_eval_queue_df),
|
107 |
+
("🔄 Running Evaluation Queue", running_eval_queue_df),
|
108 |
+
("⏳ Pending Evaluation Queue", pending_eval_queue_df)
|
109 |
+
]:
|
110 |
+
with gr.Accordion(f"{queue_name} ({len(queue_df)})", open=False):
|
111 |
+
gr.components.Dataframe(value=queue_df, headers=EVAL_COLS, datatype=EVAL_TYPES, row_count=5)
|
112 |
+
|
113 |
+
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
114 |
+
with gr.Row():
|
115 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
116 |
+
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
117 |
+
model_type = gr.Dropdown(choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
118 |
+
label="Model type", multiselect=False, interactive=True)
|
119 |
+
precision = gr.Dropdown(choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
120 |
+
label="Precision", multiselect=False, value="float16", interactive=True)
|
121 |
+
weight_type = gr.Dropdown(choices=[i.value.name for i in WeightType],
|
122 |
+
label="Weights type", multiselect=False, value="Original", interactive=True)
|
123 |
+
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
124 |
+
|
125 |
+
submit_button = gr.Button("Submit Eval")
|
126 |
+
submission_result = gr.Markdown()
|
127 |
+
submit_button.click(
|
128 |
+
add_new_eval,
|
129 |
+
[model_name_textbox, base_model_name_textbox, revision_name_textbox, precision, weight_type, model_type],
|
130 |
+
submission_result,
|
131 |
+
)
|
132 |
+
|
133 |
+
# Task-specific leaderboards
|
134 |
+
for task in ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]:
|
135 |
+
with gr.TabItem(task, elem_id="llm-benchmark-tab-table"):
|
136 |
+
gr.Markdown(TE_DESCRIPTION, elem_classes="markdown-text")
|
137 |
+
leaderboard = init_leaderboard(
|
138 |
+
prepare_leaderboard_df(LEADERBOARD_DF, task),
|
139 |
+
default_selection=['T', 'Model', 'Few-Shot', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'],
|
140 |
+
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in
|
141 |
+
['T', 'Model', 'Few-Shot', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']]
|
142 |
+
)
|
143 |
+
|
144 |
+
# Citation section
|
145 |
+
with gr.Accordion("📙 Citation", open=False):
|
146 |
+
gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)
|
147 |
+
|
148 |
+
# Background job to restart space
|
149 |
+
scheduler = BackgroundScheduler()
|
150 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
151 |
+
scheduler.start()
|
152 |
+
|
153 |
+
demo.queue(default_concurrency_limit=40).launch()
|
get_model_info.py
CHANGED
@@ -8,8 +8,8 @@ from huggingface_hub import HfApi
|
|
8 |
api = HfApi()
|
9 |
|
10 |
# Percorsi delle cartelle
|
11 |
-
input_folder = "../
|
12 |
-
output_folder = "../
|
13 |
|
14 |
# Creazione della cartella di output se non esiste
|
15 |
os.makedirs(output_folder, exist_ok=True)
|
|
|
8 |
api = HfApi()
|
9 |
|
10 |
# Percorsi delle cartelle
|
11 |
+
input_folder = "../evalita_llm_models_output/"
|
12 |
+
output_folder = "../evalita_llm_requests/"
|
13 |
|
14 |
# Creazione della cartella di output se non esiste
|
15 |
os.makedirs(output_folder, exist_ok=True)
|
src/about.py
CHANGED
@@ -5,15 +5,88 @@ from enum import Enum
|
|
5 |
class Task:
|
6 |
benchmark: str
|
7 |
metric: str
|
|
|
8 |
col_name: str
|
9 |
|
10 |
|
11 |
# Select your tasks here
|
12 |
# ---------------------------------------------------
|
13 |
class Tasks(Enum):
|
14 |
-
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
15 |
-
|
16 |
-
task1 = Task("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
NUM_FEWSHOT = 0 # Change with your few shot
|
19 |
# ---------------------------------------------------
|
@@ -21,19 +94,54 @@ NUM_FEWSHOT = 0 # Change with your few shot
|
|
21 |
|
22 |
|
23 |
# Your leaderboard name
|
24 |
-
TITLE = """<h1 align="center" id="space-title"
|
25 |
|
26 |
# What does your leaderboard evaluate?
|
27 |
INTRODUCTION_TEXT = """
|
28 |
-
|
29 |
"""
|
30 |
|
31 |
# Which evaluations are you running? how can people reproduce what you have?
|
32 |
LLM_BENCHMARKS_TEXT = f"""
|
33 |
-
|
34 |
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
"""
|
39 |
|
@@ -69,4 +177,13 @@ If everything is done, check you can launch the EleutherAIHarness on your model
|
|
69 |
|
70 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
71 |
CITATION_BUTTON_TEXT = r"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
"""
|
|
|
5 |
class Task:
|
6 |
benchmark: str
|
7 |
metric: str
|
8 |
+
metric_type: str
|
9 |
col_name: str
|
10 |
|
11 |
|
12 |
# Select your tasks here
|
13 |
# ---------------------------------------------------
|
14 |
class Tasks(Enum):
|
15 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
16 |
+
|
17 |
+
task1 = Task("text-entailment_1", "acc", "CPS", "TE")
|
18 |
+
task2 = Task("text-entailment_2", "acc", "average_accuracy", "TE Prompt Average")
|
19 |
+
task3 = Task("text-entailment_3", "acc", "best_prompt", "TE Best Prompt")
|
20 |
+
task4 = Task("text-entailment_4", "acc", "prompt_id", "TE Best Prompt Id")
|
21 |
+
|
22 |
+
task5 = Task("sentiment-analysis_1", "acc", "CPS", "SA")
|
23 |
+
task6 = Task("sentiment-analysis_2", "acc", "average_accuracy", "SA Prompt Average")
|
24 |
+
task7 = Task("sentiment-analysis_3", "acc", "best_prompt", "SA Best Prompt")
|
25 |
+
task8 = Task("sentiment-analysis_4", "acc", "prompt_id", "SA Best Prompt Id")
|
26 |
+
|
27 |
+
task9 = Task("hate-speech-detection_1", "acc", "CPS", "HS")
|
28 |
+
task10 = Task("hate-speech-detection_2", "acc", "average_accuracy", "HS Prompt Average")
|
29 |
+
task11 = Task("hate-speech-detection_3", "acc", "best_prompt", "HS Best Prompt")
|
30 |
+
task12 = Task("hate-speech-detection_4", "acc", "prompt_id", "HS Best Prompt Id")
|
31 |
+
|
32 |
+
task13 = Task("admission-test_1", "acc", "CPS", "AT")
|
33 |
+
task14 = Task("admission-test_2", "acc", "average_accuracy", "AT Prompt Average")
|
34 |
+
task15 = Task("admission-test_3", "acc", "best_prompt", "AT Best Prompt")
|
35 |
+
task16 = Task("admission-test_4", "acc", "prompt_id", "AT Best Prompt Id")
|
36 |
+
|
37 |
+
task17 = Task("word-in-context_1", "acc", "CPS", "WIC")
|
38 |
+
task18 = Task("word-in-context_2", "acc", "average_accuracy", "WIC Prompt Average")
|
39 |
+
task19 = Task("word-in-context_3", "acc", "best_prompt", "WIC Best Prompt")
|
40 |
+
task20 = Task("word-in-context_4", "acc", "prompt_id", "WIC Best Prompt Id")
|
41 |
+
|
42 |
+
task21 = Task("faq_1", "acc", "CPS", "FAQ")
|
43 |
+
task22 = Task("faq_2", "acc", "average_accuracy", "FAQ Prompt Average")
|
44 |
+
task23 = Task("faq_3", "acc", "best_prompt", "FAQ Best Prompt")
|
45 |
+
task24 = Task("faq_4", "acc", "prompt_id", "FAQ Best Prompt Id")
|
46 |
+
|
47 |
+
task25 = Task("lexical-substitution_1", "acc", "CPS", "LS")
|
48 |
+
task26 = Task("lexical-substitution_2", "acc", "average_accuracy", "LS Prompt Average")
|
49 |
+
task27 = Task("lexical-substitution_3", "acc", "best_prompt", "LS Best Prompt")
|
50 |
+
task28 = Task("lexical-substitution_4", "acc", "prompt_id", "LS Best Prompt Id")
|
51 |
+
|
52 |
+
task29 = Task("summarization-fanpage_1", "acc", "CPS", "SU")
|
53 |
+
task30 = Task("summarization-fanpage_2", "acc", "average_accuracy", "SU Prompt Average")
|
54 |
+
task31 = Task("summarization-fanpage_3", "acc", "best_prompt", "SU Best Prompt")
|
55 |
+
task32 = Task("summarization-fanpage_4", "acc", "prompt_id", "SU Best Prompt Id")
|
56 |
+
|
57 |
+
task33 = Task("evalita NER_1", "acc", "CPS", "NER")
|
58 |
+
task34 = Task("evalita NER_2", "acc", "average_accuracy", "NER Prompt Average")
|
59 |
+
task35 = Task("evalita NER_3", "acc", "best_prompt", "NER Best Prompt")
|
60 |
+
task36 = Task("evalita NER_4", "acc", "prompt_id", "NER Best Prompt Id")
|
61 |
+
|
62 |
+
task37 = Task("relation-extraction_1", "acc", "CPS", "REL")
|
63 |
+
task38 = Task("relation-extraction_2", "acc", "average_accuracy", "REL Prompt Average")
|
64 |
+
task39 = Task("relation-extraction_3", "acc", "best_prompt", "REL Best Prompt")
|
65 |
+
task40 = Task("relation-extraction_4", "acc", "prompt_id", "REL Best Prompt Id")
|
66 |
+
|
67 |
+
|
68 |
+
'''
|
69 |
+
task0 = Task("TextualEntailment", "acc", "Textual Entailment")
|
70 |
+
task1 = Task("TextualEntailment_best", "acc", "TextualEntailment Best")
|
71 |
+
task2 = Task("Sentiment Analysis", "acc", "Sentiment Analysis")
|
72 |
+
task3 = Task("Sentiment Analysis_best", "acc", "Sentiment Analysis_best")
|
73 |
+
task4 = Task("Hate Speech", "acc", "Hate Speech")
|
74 |
+
task5 = Task("Hate Speech_best", "acc", "Hate Speech_best")
|
75 |
+
task6 = Task("Admission Test", "acc", "Admission Test")
|
76 |
+
task7 = Task("Admission Test_best", "acc", "Admission Test_best")
|
77 |
+
task8 = Task("Word in Context", "acc", "Word in Context")
|
78 |
+
task9 = Task("Word in Context_best", "acc", "Word in Context_best")
|
79 |
+
task10 = Task("FAQ", "acc", "FAQ")
|
80 |
+
task11 = Task("FAQ_best", "acc", "FAQ_best")
|
81 |
+
task12 = Task("Lexical Substitution", "acc", "Lexical Substitution")
|
82 |
+
task13 = Task("Lexical Substitution_best", "acc", "Lexical Substitution_best")
|
83 |
+
task14 = Task("Summarization", "acc", "Summarization")
|
84 |
+
task15 = Task("Summarization_best", "acc", "Summarization_best")
|
85 |
+
task16 = Task("NER", "acc", "NER")
|
86 |
+
task17 = Task("NER_best", "acc", "NER_best")
|
87 |
+
task18 = Task("REL", "acc", "REL")
|
88 |
+
task19 = Task("REL_best", "acc", "REL_best")
|
89 |
+
'''
|
90 |
|
91 |
NUM_FEWSHOT = 0 # Change with your few shot
|
92 |
# ---------------------------------------------------
|
|
|
94 |
|
95 |
|
96 |
# Your leaderboard name
|
97 |
+
TITLE = """<h1 align="center" id="space-title">🚀 Evalita Leaderboard 🚀</h1>"""
|
98 |
|
99 |
# What does your leaderboard evaluate?
|
100 |
INTRODUCTION_TEXT = """
|
101 |
+
Evalita-LLM, a new benchmark designed to evaluate Large Language Models (LLMs) on Italian tasks. The distinguishing and innovative features of Evalita-LLM are the following: (i) all tasks are native Italian, avoiding issues of translating from Italian and potential cultural biases; (ii) in addition to well established multiple-choice tasks, the benchmark includes generative tasks, enabling more natural interaction with LLMs; (iii) all tasks are evaluated against multiple prompts, this way mitigating the model sensitivity to specific prompts and allowing a fairer and objective evaluation.
|
102 |
"""
|
103 |
|
104 |
# Which evaluations are you running? how can people reproduce what you have?
|
105 |
LLM_BENCHMARKS_TEXT = f"""
|
106 |
+
### Groups
|
107 |
|
108 |
+
- `evalita-mp`: All tasks (perplexity and non-perplexity based).
|
109 |
+
- `evalita-mp_gen`: Only generative tasks.
|
110 |
+
- `evalita-mp_mc`: Only perplexity-based tasks.
|
111 |
+
|
112 |
+
#### Tasks
|
113 |
+
|
114 |
+
The following Evalita-LLM tasks can also be evaluated in isolation:
|
115 |
+
- `evalita-mp_te`: Textual Entailment
|
116 |
+
- `evalita-mp_sa`: Sentiment Analysis
|
117 |
+
- `evalita-mp_wic`: Word in Context
|
118 |
+
- `evalita-mp_hs`: Hate Speech Detection
|
119 |
+
- `evalita-mp_at`: Admission Tests
|
120 |
+
- `evalita-mp_faq`: FAQ
|
121 |
+
- `evalita-mp_sum_fp`: Summarization
|
122 |
+
- `evalita-mp_ls`: Lexical Substitution
|
123 |
+
- `evalita-mp_ner_group`: Named Entity Recognition
|
124 |
+
- `evalita-mp_re`: Relation Extraction
|
125 |
+
|
126 |
+
|
127 |
+
### Usage
|
128 |
+
|
129 |
+
```bash
|
130 |
+
|
131 |
+
lm_eval --model hf --model_args pretrained=meta-llama/Llama-2-7b-hf --tasks evalita-mp --device cuda:0 --batch_size auto
|
132 |
+
```
|
133 |
+
|
134 |
+
### Checklist
|
135 |
+
|
136 |
+
* [x] Is the task an existing benchmark in the literature?
|
137 |
+
* [x] Have you referenced the original paper that introduced the task?
|
138 |
+
* [x] If yes, does the original paper provide a reference implementation?
|
139 |
+
* [x] Yes, original implementation contributed by author of the benchmark
|
140 |
+
|
141 |
+
If other tasks on this dataset are already supported:
|
142 |
+
* [x] Is the "Main" variant of this task clearly denoted?
|
143 |
+
* [x] Have you provided a short sentence in a README on what each new variant adds / evaluates?
|
144 |
+
* [x] Have you noted which, if any, published evaluation setups are matched by this variant?
|
145 |
|
146 |
"""
|
147 |
|
|
|
177 |
|
178 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
179 |
CITATION_BUTTON_TEXT = r"""
|
180 |
+
@misc{magnini2025evalitallmbenchmarkinglargelanguage,
|
181 |
+
title={Evalita-LLM: Benchmarking Large Language Models on Italian},
|
182 |
+
author={Bernardo Magnini and Roberto Zanoli and Michele Resta and Martin Cimmino and Paolo Albano and Marco Madeddu and Viviana Patti},
|
183 |
+
year={2025},
|
184 |
+
eprint={2502.02289},
|
185 |
+
archivePrefix={arXiv},
|
186 |
+
primaryClass={cs.CL},
|
187 |
+
url={https://arxiv.org/abs/2502.02289},
|
188 |
+
}
|
189 |
"""
|
src/display/utils.py
CHANGED
@@ -25,6 +25,7 @@ auto_eval_column_dict = []
|
|
25 |
# Init
|
26 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
|
|
28 |
#Scores
|
29 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
30 |
for task in Tasks:
|
@@ -108,3 +109,28 @@ EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
|
108 |
|
109 |
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# Init
|
26 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
28 |
+
auto_eval_column_dict.append(["fewshot", ColumnContent, ColumnContent("Few-Shot", "str", True)])
|
29 |
#Scores
|
30 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
|
31 |
for task in Tasks:
|
|
|
109 |
|
110 |
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
111 |
|
112 |
+
|
113 |
+
# Roberto
|
114 |
+
|
115 |
+
# Nuovi valori per CPS, AVERAGE, BEST, e ID nella tabella
|
116 |
+
@dataclass
|
117 |
+
class NewColumnContent:
|
118 |
+
name: str
|
119 |
+
type: str
|
120 |
+
displayed_by_default: bool
|
121 |
+
hidden: bool = False
|
122 |
+
never_hidden: bool = False
|
123 |
+
|
124 |
+
# Inizializza i nuovi valori
|
125 |
+
new_column_dict = []
|
126 |
+
# Aggiungi CPS, VERAGE, BEST, ID
|
127 |
+
new_column_dict.append(["CPS", NewColumnContent, NewColumnContent("CPS", "number", True)])
|
128 |
+
new_column_dict.append(["AVERAGE", NewColumnContent, NewColumnContent("Average ⬆️", "number", True)])
|
129 |
+
new_column_dict.append(["BEST", NewColumnContent, NewColumnContent("Best Performance", "number", True)])
|
130 |
+
new_column_dict.append(["ID", NewColumnContent, NewColumnContent("ID", "str", True)])
|
131 |
+
|
132 |
+
# Puoi usare make_dataclass per creare la classe dinamicamente come per AutoEvalColumn
|
133 |
+
NewColumn = make_dataclass("NewColumn", new_column_dict, frozen=True)
|
134 |
+
|
135 |
+
# Includi questi nuovi valori nei COLS o in altre variabili di configurazione, se necessario
|
136 |
+
NEW_COLS = [c.name for c in fields(NewColumn) if not c.hidden]
|
src/envs.py
CHANGED
@@ -6,12 +6,17 @@ from huggingface_hub import HfApi
|
|
6 |
# ----------------------------------
|
7 |
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
8 |
|
9 |
-
OWNER = "
|
|
|
10 |
# ----------------------------------
|
11 |
|
12 |
-
REPO_ID = f"{OWNER}/leaderboard"
|
13 |
-
QUEUE_REPO = f"{OWNER}/requests"
|
14 |
-
RESULTS_REPO = f"{OWNER}/results"
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# If you setup a cache later, just change HF_HOME
|
17 |
CACHE_PATH=os.getenv("HF_HOME", ".")
|
|
|
6 |
# ----------------------------------
|
7 |
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
8 |
|
9 |
+
#OWNER = "giux78" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
+
OWNER = "evalitahf"
|
11 |
# ----------------------------------
|
12 |
|
13 |
+
#REPO_ID = f"{OWNER}/leaderboard-evalita"
|
14 |
+
#QUEUE_REPO = f"{OWNER}/evalita-requests"
|
15 |
+
#RESULTS_REPO = f"{OWNER}/evalita-results"
|
16 |
+
|
17 |
+
REPO_ID = f"{OWNER}/evalita_llm_leaderboard"
|
18 |
+
QUEUE_REPO = f"{OWNER}/evalita_llm_requests"
|
19 |
+
RESULTS_REPO = f"{OWNER}/evalita_llm_results"
|
20 |
|
21 |
# If you setup a cache later, just change HF_HOME
|
22 |
CACHE_PATH=os.getenv("HF_HOME", ".")
|
src/leaderboard/read_evals.py
CHANGED
@@ -22,6 +22,8 @@ class EvalResult:
|
|
22 |
model: str
|
23 |
revision: str # commit hash, "" if main
|
24 |
results: dict
|
|
|
|
|
25 |
precision: Precision = Precision.Unknown
|
26 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
27 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
@@ -40,21 +42,47 @@ class EvalResult:
|
|
40 |
|
41 |
config = data.get("config")
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# Precision
|
44 |
precision = Precision.from_str(config.get("model_dtype"))
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
# Get model and org
|
47 |
org_and_model = config.get("model_name", config.get("model_args", None))
|
48 |
org_and_model = org_and_model.split("/", 1)
|
49 |
|
|
|
|
|
50 |
if len(org_and_model) == 1:
|
51 |
org = None
|
52 |
model = org_and_model[0]
|
53 |
-
result_key = f"{model}_{precision.value.name}"
|
|
|
54 |
else:
|
55 |
org = org_and_model[0]
|
56 |
model = org_and_model[1]
|
57 |
-
result_key = f"{org}_{model}_{precision.value.name}"
|
|
|
58 |
full_model = "/".join(org_and_model)
|
59 |
|
60 |
still_on_hub, _, model_config = is_model_on_hub(
|
@@ -71,6 +99,7 @@ class EvalResult:
|
|
71 |
for task in Tasks:
|
72 |
task = task.value
|
73 |
|
|
|
74 |
# We average all scores of a given metric (not all metrics are present in all files)
|
75 |
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
76 |
if accs.size == 0 or any([acc is None for acc in accs]):
|
@@ -78,6 +107,29 @@ class EvalResult:
|
|
78 |
|
79 |
mean_acc = np.mean(accs) * 100.0
|
80 |
results[task.benchmark] = mean_acc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
return self(
|
83 |
eval_name=result_key,
|
@@ -85,6 +137,9 @@ class EvalResult:
|
|
85 |
org=org,
|
86 |
model=model,
|
87 |
results=results,
|
|
|
|
|
|
|
88 |
precision=precision,
|
89 |
revision= config.get("model_sha", ""),
|
90 |
still_on_hub=still_on_hub,
|
@@ -109,17 +164,25 @@ class EvalResult:
|
|
109 |
|
110 |
def to_dict(self):
|
111 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
112 |
-
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
|
|
|
|
|
|
113 |
data_dict = {
|
114 |
"eval_name": self.eval_name, # not a column, just a save name,
|
115 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
116 |
-
AutoEvalColumn.model_type.name: self.model_type.value.name,
|
117 |
-
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
|
|
|
|
|
|
|
|
118 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
119 |
AutoEvalColumn.architecture.name: self.architecture,
|
120 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
121 |
AutoEvalColumn.revision.name: self.revision,
|
122 |
AutoEvalColumn.average.name: average,
|
|
|
123 |
AutoEvalColumn.license.name: self.license,
|
124 |
AutoEvalColumn.likes.name: self.likes,
|
125 |
AutoEvalColumn.params.name: self.num_params,
|
@@ -176,7 +239,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
176 |
for model_result_filepath in model_result_filepaths:
|
177 |
# Creation of result
|
178 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
179 |
-
eval_result.update_with_request_file(requests_path)
|
180 |
|
181 |
# Store results of same eval together
|
182 |
eval_name = eval_result.eval_name
|
|
|
22 |
model: str
|
23 |
revision: str # commit hash, "" if main
|
24 |
results: dict
|
25 |
+
average_CPS: str
|
26 |
+
fewshot: str
|
27 |
precision: Precision = Precision.Unknown
|
28 |
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
29 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
|
|
42 |
|
43 |
config = data.get("config")
|
44 |
|
45 |
+
average_CPS = data.get("average_CPS")
|
46 |
+
|
47 |
+
num_fewshot = config.get("num_fewshot", 0) # Imposta il valore predefinito a 0
|
48 |
+
try:
|
49 |
+
num_fewshot = int(num_fewshot) # Converte in intero se possibile
|
50 |
+
except ValueError:
|
51 |
+
num_fewshot = 0 # Se la conversione fallisce, assegna 0
|
52 |
+
|
53 |
+
|
54 |
+
precision = config.get("precision")
|
55 |
+
|
56 |
+
print(precision)
|
57 |
+
|
58 |
+
print(config, num_fewshot)
|
59 |
+
|
60 |
# Precision
|
61 |
precision = Precision.from_str(config.get("model_dtype"))
|
62 |
|
63 |
+
model_type = config.get("model_type")
|
64 |
+
# Modifica: Convertire model_type in un oggetto Enum (se è un Enum)
|
65 |
+
model_type = ModelType.from_str(model_type) if model_type else None
|
66 |
+
|
67 |
+
print("=====================", model_type, config.get("model_name"))
|
68 |
+
|
69 |
+
|
70 |
# Get model and org
|
71 |
org_and_model = config.get("model_name", config.get("model_args", None))
|
72 |
org_and_model = org_and_model.split("/", 1)
|
73 |
|
74 |
+
print(precision.value.name)
|
75 |
+
|
76 |
if len(org_and_model) == 1:
|
77 |
org = None
|
78 |
model = org_and_model[0]
|
79 |
+
#result_key = f"{model}_{precision.value.name}"
|
80 |
+
result_key = f"{model}_{num_fewshot}"
|
81 |
else:
|
82 |
org = org_and_model[0]
|
83 |
model = org_and_model[1]
|
84 |
+
#result_key = f"{org}_{model}_{precision.value.name}"
|
85 |
+
result_key = f"{org}_{model}_{num_fewshot}"
|
86 |
full_model = "/".join(org_and_model)
|
87 |
|
88 |
still_on_hub, _, model_config = is_model_on_hub(
|
|
|
99 |
for task in Tasks:
|
100 |
task = task.value
|
101 |
|
102 |
+
'''
|
103 |
# We average all scores of a given metric (not all metrics are present in all files)
|
104 |
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
|
105 |
if accs.size == 0 or any([acc is None for acc in accs]):
|
|
|
107 |
|
108 |
mean_acc = np.mean(accs) * 100.0
|
109 |
results[task.benchmark] = mean_acc
|
110 |
+
'''
|
111 |
+
|
112 |
+
for k, v in data["tasks"].items():
|
113 |
+
#if task.benchmark == k:
|
114 |
+
if task.benchmark[:-2] == k:
|
115 |
+
# print(k, "==================", v)
|
116 |
+
# results[task.benchmark] = v[task.cps]
|
117 |
+
|
118 |
+
#print(task.benchmark, v[task.metric])
|
119 |
+
|
120 |
+
if "Best Prompt Id" in task.col_name:
|
121 |
+
results[task.benchmark] = int(v[task.metric_type][-1:])
|
122 |
+
#print(results[task.benchmark],v[task.metric_type][-1:])
|
123 |
+
else:
|
124 |
+
results[task.benchmark] = v[task.metric_type]
|
125 |
+
|
126 |
+
|
127 |
+
#results[task.benchmark + "_" + task.metric] = 1.0
|
128 |
+
|
129 |
+
|
130 |
+
#results[task.benchmark] = v[task.accuracy]
|
131 |
+
# print("======", results[task.benchmark])
|
132 |
+
#results[task.benchmark] = 1.0
|
133 |
|
134 |
return self(
|
135 |
eval_name=result_key,
|
|
|
137 |
org=org,
|
138 |
model=model,
|
139 |
results=results,
|
140 |
+
average_CPS=average_CPS,
|
141 |
+
fewshot=num_fewshot,
|
142 |
+
model_type=model_type,
|
143 |
precision=precision,
|
144 |
revision= config.get("model_sha", ""),
|
145 |
still_on_hub=still_on_hub,
|
|
|
164 |
|
165 |
def to_dict(self):
|
166 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
167 |
+
#average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
|
168 |
+
average = self.average_CPS
|
169 |
+
fewshot = self.fewshot
|
170 |
+
print("?????", fewshot)
|
171 |
data_dict = {
|
172 |
"eval_name": self.eval_name, # not a column, just a save name,
|
173 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
174 |
+
#AutoEvalColumn.model_type.name: self.model_type.value.name,
|
175 |
+
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
176 |
+
|
177 |
+
AutoEvalColumn.model_type.name: self.model_type.value.name if self.model_type else "Unknown",
|
178 |
+
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol if self.model_type else "Unknown",
|
179 |
+
|
180 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
181 |
AutoEvalColumn.architecture.name: self.architecture,
|
182 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
183 |
AutoEvalColumn.revision.name: self.revision,
|
184 |
AutoEvalColumn.average.name: average,
|
185 |
+
AutoEvalColumn.fewshot.name: fewshot,
|
186 |
AutoEvalColumn.license.name: self.license,
|
187 |
AutoEvalColumn.likes.name: self.likes,
|
188 |
AutoEvalColumn.params.name: self.num_params,
|
|
|
239 |
for model_result_filepath in model_result_filepaths:
|
240 |
# Creation of result
|
241 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
242 |
+
#eval_result.update_with_request_file(requests_path)
|
243 |
|
244 |
# Store results of same eval together
|
245 |
eval_name = eval_result.eval_name
|