File size: 10,900 Bytes
cae4d0f 5b04d4e cae4d0f 5888550 cae4d0f 7a90675 dbd3b18 7a90675 dbd3b18 cae4d0f ea6af72 5888550 ea6af72 7a90675 ea6af72 5888550 7a90675 ea6af72 5888550 ea6af72 5888550 ea6af72 cae4d0f dbd3b18 cae4d0f ea6af72 cae4d0f ea6af72 cae4d0f 7a90675 dbd3b18 cae4d0f 7a90675 cae4d0f 7a90675 cae4d0f 5888550 cae4d0f 7a90675 5888550 7a90675 cae4d0f 5888550 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src.display.css_html_js import custom_css
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import random
# Define task metadata (icons, names, descriptions)
TASK_METADATA_MULTIPLECHOICE = {
"TE": {"icon": "π", "name": "Textual Entailment", "tooltip": ""},
"SA": {"icon": "π", "name": "Sentiment Analysis", "tooltip": ""},
"HS": {"icon": "β οΈ", "name": "Hate Speech", "tooltip": ""},
"AT": {"icon": "π₯", "name": "Admission Test", "tooltip": ""},
"WIC": {"icon": "π€", "name": "Word in Context", "tooltip": ""},
"FAQ": {"icon": "β", "name": "Frequently Asked Questions", "tooltip": ""}
}
# Define task metadata (icons, names, descriptions)
TASK_METADATA_GENERATIVE = {
"LS": {"icon": "π", "name": "Lexical Substitution", "tooltip": ""},
"SU": {"icon": "π", "name": "Summarization", "tooltip": ""},
"NER": {"icon": "π·οΈ", "name": "Named Entity Recognition", "tooltip": ""},
"REL": {"icon": "π", "name": "Relation Extraction", "tooltip": ""},
}
def restart_space():
"""Restart the Hugging Face space."""
API.restart_space(repo_id=REPO_ID)
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""
Initialize and return the leaderboard when it is first loaded or when 'benchmark' is selected.
The table is sorted based on the "Avg. Combined Performance" field.
"""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
field_list = fields(AutoEvalColumn)
return Leaderboard(
value=dataframe,
datatype=[c.type for c in field_list],
#select_columns=SelectColumns(
# default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
# cant_deselect=[c.name for c in field_list if c.never_hidden],
# label="Select Columns to Display:",
#),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),
#ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)",
# default=[["0οΈβ£", "0οΈβ£"]]),
# ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),
],
#filter_columns=[
# ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
# #ColumnFilter("FS", type="dropdown", label="5-Few-Shot")
#],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False,
)
def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""
Update and return the leaderboard when a specific task is selected.
The table is sorted based on the "Combined Performance" field.
"""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
sorted_dataframe = dataframe.sort_values(by="Combined Performance", ascending=False)
#print(sorted_dataframe['Combined Performance'])
field_list = fields(AutoEvalColumn)
return Leaderboard(
value=sorted_dataframe,
datatype=[c.type for c in field_list],
#select_columns=SelectColumns(
# default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
# cant_deselect=[c.name for c in field_list if c.never_hidden],
# label="Select Columns to Display:",
#),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),
],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False
)
'''
# Helper function for leaderboard initialization
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""Initialize and return a leaderboard."""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_type.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
'''
def download_snapshot(repo, local_dir):
"""Try to download a snapshot from Hugging Face Hub."""
try:
print(f"Downloading from {repo} to {local_dir}...")
snapshot_download(repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN)
except Exception as e:
print(f"Error downloading {repo}: {e}")
restart_space()
# Initialize the app by downloading snapshots
download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
# Load leaderboard data
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# Prepare the main interface
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# Main leaderboard tab
with gr.TabItem("π
Benchmark"):
leaderboard = init_leaderboard(
LEADERBOARD_DF,
default_selection=['FS', 'Model', "Avg. Combined Performance β¬οΈ", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['FS', 'Model', "Avg. Combined Performance β¬οΈ", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
)
# About tab
with gr.TabItem("π About"):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# About tab
with gr.TabItem("β", interactive=False):
gr.Markdown("", elem_classes="markdown-text")
# Task-specific leaderboards
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
default_selection=['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']]
)
# About tab
with gr.TabItem("β", interactive=False):
gr.Markdown("", elem_classes="markdown-text")
# Task-specific leaderboards
for task, metadata in TASK_METADATA_GENERATIVE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average",
f"{task} Best Prompt": "Best Prompt",
f"{task} Best Prompt Id": "Best Prompt Id",
task: "Combined Performance"}),
default_selection=['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt',
'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['FS', 'Model', 'Combined Performance', 'Prompt Average',
'Best Prompt', 'Best Prompt Id']]
)
# Citation section
with gr.Accordion("π Citation", open=False):
gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)
# Background job to restart space
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
# Launch the app with concurrent queueing
demo.queue(default_concurrency_limit=40).launch(debug=True, # Enable Gradio debug mode
show_error=True) |