File size: 10,900 Bytes
cae4d0f
 
 
 
 
 
 
 
 
5b04d4e
cae4d0f
 
5888550
cae4d0f
 
7a90675
dbd3b18
 
 
 
 
7a90675
 
 
 
 
dbd3b18
 
 
 
cae4d0f
 
 
 
 
 
ea6af72
 
5888550
 
 
 
ea6af72
 
 
 
 
 
 
 
7a90675
 
 
 
 
ea6af72
 
 
5888550
 
 
7a90675
ea6af72
5888550
 
 
 
 
ea6af72
 
 
5888550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea6af72
cae4d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd3b18
 
cae4d0f
 
 
 
ea6af72
cae4d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea6af72
cae4d0f
7a90675
dbd3b18
cae4d0f
 
 
 
 
 
 
 
 
 
7a90675
 
 
 
cae4d0f
7a90675
 
cae4d0f
 
 
 
 
5888550
cae4d0f
 
 
 
 
7a90675
 
 
 
 
 
 
 
 
 
5888550
7a90675
 
 
 
 
 
 
 
 
 
 
cae4d0f
 
 
 
 
 
 
 
 
 
5888550
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src.display.css_html_js import custom_css
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import random

# Define task metadata (icons, names, descriptions)
TASK_METADATA_MULTIPLECHOICE = {
    "TE": {"icon": "πŸ“Š", "name": "Textual Entailment", "tooltip": ""},
    "SA": {"icon": "πŸ˜ƒ", "name": "Sentiment Analysis", "tooltip": ""},
    "HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
    "AT": {"icon": "πŸ₯", "name": "Admission Test", "tooltip": ""},
    "WIC": {"icon": "πŸ”€", "name": "Word in Context", "tooltip": ""},
    "FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
}

# Define task metadata (icons, names, descriptions)
TASK_METADATA_GENERATIVE = {
    "LS": {"icon": "πŸ”„", "name": "Lexical Substitution", "tooltip": ""},
    "SU": {"icon": "πŸ“", "name": "Summarization", "tooltip": ""},
    "NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
    "REL": {"icon": "πŸ”—", "name": "Relation Extraction", "tooltip": ""},
}

def restart_space():
    """Restart the Hugging Face space."""
    API.restart_space(repo_id=REPO_ID)


def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
    """

    Initialize and return the leaderboard when it is first loaded or when 'benchmark' is selected.

    The table is sorted based on the "Avg. Combined Performance" field.

    """
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    field_list = fields(AutoEvalColumn)

    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in field_list],
        #select_columns=SelectColumns(
        #    default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
        #    cant_deselect=[c.name for c in field_list if c.never_hidden],
        #    label="Select Columns to Display:",
        #),
        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),
            #ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)",
            #             default=[["0️⃣", "0️⃣"]]),
        #   ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),
        ],
        #filter_columns=[
        #    ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
        #    #ColumnFilter("FS", type="dropdown", label="5-Few-Shot")
        #],
        bool_checkboxgroup_label="Evaluation Mode",
        interactive=False,
    )

def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
    """

    Update and return the leaderboard when a specific task is selected.

    The table is sorted based on the "Combined Performance" field.

    """
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    sorted_dataframe = dataframe.sort_values(by="Combined Performance", ascending=False)

    #print(sorted_dataframe['Combined Performance'])

    field_list = fields(AutoEvalColumn)

    return Leaderboard(
        value=sorted_dataframe,
        datatype=[c.type for c in field_list],
        #select_columns=SelectColumns(
        #    default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
        #    cant_deselect=[c.name for c in field_list if c.never_hidden],
        #    label="Select Columns to Display:",
        #),
        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),
        ],
        bool_checkboxgroup_label="Evaluation Mode",
        interactive=False
    )

'''

# Helper function for leaderboard initialization

def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):

    """Initialize and return a leaderboard."""

    if dataframe is None or dataframe.empty:

        raise ValueError("Leaderboard DataFrame is empty or None.")



    return Leaderboard(

        value=dataframe,

        datatype=[c.type for c in fields(AutoEvalColumn)],

        select_columns=SelectColumns(

            default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],

            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],

            label="Select Columns to Display:",

        ),

        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],

        hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],

        filter_columns=[

            ColumnFilter(AutoEvalColumn.fewshot_type.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),

            ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),

        ],

        bool_checkboxgroup_label="Hide models",

        interactive=False,

    )

'''

def download_snapshot(repo, local_dir):
    """Try to download a snapshot from Hugging Face Hub."""
    try:
        print(f"Downloading from {repo} to {local_dir}...")
        snapshot_download(repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN)
    except Exception as e:
        print(f"Error downloading {repo}: {e}")
        restart_space()


# Initialize the app by downloading snapshots
download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)

# Load leaderboard data
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

# Prepare the main interface
demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:

        # Main leaderboard tab
        with gr.TabItem("πŸ… Benchmark"):

            leaderboard = init_leaderboard(
                LEADERBOARD_DF,
                default_selection=['FS', 'Model', "Avg. Combined Performance ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
                hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['FS', 'Model', "Avg. Combined Performance ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
            )

        # About tab
        with gr.TabItem("πŸ“ About"):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        # About tab
        with gr.TabItem("β•‘", interactive=False):
            gr.Markdown("", elem_classes="markdown-text")

        # Task-specific leaderboards
        for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():

            with gr.TabItem(f"{metadata['icon']}{task}"):

                task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
                gr.Markdown(task_description, elem_classes="markdown-text")

                leaderboard = update_task_leaderboard(
                    LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
                    default_selection=['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'],
                    hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']]
                )

        # About tab
        with gr.TabItem("β”‚", interactive=False):
            gr.Markdown("", elem_classes="markdown-text")

        # Task-specific leaderboards
        for task, metadata in TASK_METADATA_GENERATIVE.items():
            with gr.TabItem(f"{metadata['icon']}{task}"):
                task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
                gr.Markdown(task_description, elem_classes="markdown-text")

                leaderboard = update_task_leaderboard(
                    LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average",
                                                   f"{task} Best Prompt": "Best Prompt",
                                                   f"{task} Best Prompt Id": "Best Prompt Id",
                                                   task: "Combined Performance"}),
                    default_selection=['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt',
                                       'Best Prompt Id'],
                    hidden_columns=[col for col in LEADERBOARD_DF.columns if
                                    col not in ['FS', 'Model', 'Combined Performance', 'Prompt Average',
                                                'Best Prompt', 'Best Prompt Id']]
                )

    # Citation section
    with gr.Accordion("πŸ“™ Citation", open=False):
        gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)

# Background job to restart space
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()

# Launch the app with concurrent queueing
demo.queue(default_concurrency_limit=40).launch(debug=True,  # Enable Gradio debug mode
        show_error=True)