Small changes
Browse files- app.py +48 -6
- src/display/utils.py +5 -4
- src/leaderboard/read_evals.py +18 -14
app.py
CHANGED
|
@@ -10,6 +10,7 @@ from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoE
|
|
| 10 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 11 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 12 |
from src.submission.submit import add_new_eval
|
|
|
|
| 13 |
|
| 14 |
# Define task metadata (icons, names, descriptions)
|
| 15 |
TASK_METADATA_MULTIPLECHOICE = {
|
|
@@ -35,7 +36,10 @@ def restart_space():
|
|
| 35 |
|
| 36 |
|
| 37 |
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
| 38 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 39 |
if dataframe is None or dataframe.empty:
|
| 40 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 41 |
|
|
@@ -52,13 +56,50 @@ def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
|
| 52 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 53 |
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
| 54 |
filter_columns=[
|
| 55 |
-
ColumnFilter(AutoEvalColumn.
|
|
|
|
|
|
|
| 56 |
# ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),
|
| 57 |
],
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
interactive=False,
|
| 60 |
)
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
'''
|
| 63 |
# Helper function for leaderboard initialization
|
| 64 |
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
|
@@ -137,7 +178,7 @@ with demo:
|
|
| 137 |
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
| 138 |
gr.Markdown(task_description, elem_classes="markdown-text")
|
| 139 |
|
| 140 |
-
leaderboard =
|
| 141 |
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
|
| 142 |
default_selection=['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'],
|
| 143 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']]
|
|
@@ -153,7 +194,7 @@ with demo:
|
|
| 153 |
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
| 154 |
gr.Markdown(task_description, elem_classes="markdown-text")
|
| 155 |
|
| 156 |
-
leaderboard =
|
| 157 |
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average",
|
| 158 |
f"{task} Best Prompt": "Best Prompt",
|
| 159 |
f"{task} Best Prompt Id": "Best Prompt Id",
|
|
@@ -175,4 +216,5 @@ scheduler.add_job(restart_space, "interval", seconds=1800)
|
|
| 175 |
scheduler.start()
|
| 176 |
|
| 177 |
# Launch the app with concurrent queueing
|
| 178 |
-
demo.queue(default_concurrency_limit=40).launch(
|
|
|
|
|
|
| 10 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 11 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 12 |
from src.submission.submit import add_new_eval
|
| 13 |
+
import random
|
| 14 |
|
| 15 |
# Define task metadata (icons, names, descriptions)
|
| 16 |
TASK_METADATA_MULTIPLECHOICE = {
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
| 39 |
+
"""
|
| 40 |
+
Initialize and return the leaderboard when it is first loaded or when 'benchmark' is selected.
|
| 41 |
+
The table is sorted based on the "Avg. Combined Performance" field.
|
| 42 |
+
"""
|
| 43 |
if dataframe is None or dataframe.empty:
|
| 44 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 45 |
|
|
|
|
| 56 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 57 |
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
| 58 |
filter_columns=[
|
| 59 |
+
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),
|
| 60 |
+
#ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)",
|
| 61 |
+
# default=[["0️⃣", "0️⃣"]]),
|
| 62 |
# ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),
|
| 63 |
],
|
| 64 |
+
#filter_columns=[
|
| 65 |
+
# ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
|
| 66 |
+
# #ColumnFilter("FS", type="dropdown", label="5-Few-Shot")
|
| 67 |
+
#],
|
| 68 |
+
bool_checkboxgroup_label="Evaluation Mode",
|
| 69 |
interactive=False,
|
| 70 |
)
|
| 71 |
|
| 72 |
+
def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
| 73 |
+
"""
|
| 74 |
+
Update and return the leaderboard when a specific task is selected.
|
| 75 |
+
The table is sorted based on the "Combined Performance" field.
|
| 76 |
+
"""
|
| 77 |
+
if dataframe is None or dataframe.empty:
|
| 78 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 79 |
+
|
| 80 |
+
sorted_dataframe = dataframe.sort_values(by="Combined Performance", ascending=False)
|
| 81 |
+
|
| 82 |
+
#print(sorted_dataframe['Combined Performance'])
|
| 83 |
+
|
| 84 |
+
field_list = fields(AutoEvalColumn)
|
| 85 |
+
|
| 86 |
+
return Leaderboard(
|
| 87 |
+
value=sorted_dataframe,
|
| 88 |
+
datatype=[c.type for c in field_list],
|
| 89 |
+
#select_columns=SelectColumns(
|
| 90 |
+
# default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
|
| 91 |
+
# cant_deselect=[c.name for c in field_list if c.never_hidden],
|
| 92 |
+
# label="Select Columns to Display:",
|
| 93 |
+
#),
|
| 94 |
+
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 95 |
+
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
| 96 |
+
filter_columns=[
|
| 97 |
+
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),
|
| 98 |
+
],
|
| 99 |
+
bool_checkboxgroup_label="Evaluation Mode",
|
| 100 |
+
interactive=False
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
'''
|
| 104 |
# Helper function for leaderboard initialization
|
| 105 |
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
|
|
|
| 178 |
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
| 179 |
gr.Markdown(task_description, elem_classes="markdown-text")
|
| 180 |
|
| 181 |
+
leaderboard = update_task_leaderboard(
|
| 182 |
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
|
| 183 |
default_selection=['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'],
|
| 184 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']]
|
|
|
|
| 194 |
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
| 195 |
gr.Markdown(task_description, elem_classes="markdown-text")
|
| 196 |
|
| 197 |
+
leaderboard = update_task_leaderboard(
|
| 198 |
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average",
|
| 199 |
f"{task} Best Prompt": "Best Prompt",
|
| 200 |
f"{task} Best Prompt Id": "Best Prompt Id",
|
|
|
|
| 216 |
scheduler.start()
|
| 217 |
|
| 218 |
# Launch the app with concurrent queueing
|
| 219 |
+
demo.queue(default_concurrency_limit=40).launch(debug=True, # Enable Gradio debug mode
|
| 220 |
+
show_error=True)
|
src/display/utils.py
CHANGED
|
@@ -25,7 +25,8 @@ auto_eval_column_dict = []
|
|
| 25 |
# Init
|
| 26 |
#auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 27 |
|
| 28 |
-
auto_eval_column_dict.append(["
|
|
|
|
| 29 |
|
| 30 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 31 |
#auto_eval_column_dict.append(["fewshot", ColumnContent, ColumnContent("Few-Shot", "str", True)])
|
|
@@ -103,11 +104,11 @@ class FewShotType(Enum):
|
|
| 103 |
return f"{self.value.symbol}{separator}{self.value.name}"
|
| 104 |
|
| 105 |
@staticmethod
|
| 106 |
-
def from_num_fewshot(
|
| 107 |
"""Determines FewShotType based on num_fewshot."""
|
| 108 |
-
if
|
| 109 |
return FewShotType.ZS
|
| 110 |
-
|
| 111 |
return FewShotType.FS
|
| 112 |
return FewShotType.Unknown
|
| 113 |
|
|
|
|
| 25 |
# Init
|
| 26 |
#auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
| 27 |
|
| 28 |
+
auto_eval_column_dict.append(["fewshot_symbol", ColumnContent, ColumnContent("FS", "str", True, never_hidden=True)])
|
| 29 |
+
auto_eval_column_dict.append(["is_5fewshot", ColumnContent, ColumnContent("IS_FS", "bool", True)])
|
| 30 |
|
| 31 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
| 32 |
#auto_eval_column_dict.append(["fewshot", ColumnContent, ColumnContent("Few-Shot", "str", True)])
|
|
|
|
| 104 |
return f"{self.value.symbol}{separator}{self.value.name}"
|
| 105 |
|
| 106 |
@staticmethod
|
| 107 |
+
def from_num_fewshot(is_5fewshot):
|
| 108 |
"""Determines FewShotType based on num_fewshot."""
|
| 109 |
+
if is_5fewshot is False:
|
| 110 |
return FewShotType.ZS
|
| 111 |
+
elif is_5fewshot is True:
|
| 112 |
return FewShotType.FS
|
| 113 |
return FewShotType.Unknown
|
| 114 |
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -25,8 +25,8 @@ class EvalResult:
|
|
| 25 |
revision: str # commit hash, "" if main
|
| 26 |
results: Dict[str, Union[float, int]] # float o int
|
| 27 |
average_CPS: float
|
| 28 |
-
|
| 29 |
-
|
| 30 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
| 31 |
architecture: str = "Unknown"
|
| 32 |
license: str = "?"
|
|
@@ -47,13 +47,17 @@ class EvalResult:
|
|
| 47 |
# Ottieni average_CPS come float
|
| 48 |
average_CPS = float(data.get('average_CPS', 0.0)) # 0.0 come valore di default
|
| 49 |
|
| 50 |
-
|
|
|
|
| 51 |
try:
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
| 53 |
except ValueError:
|
| 54 |
-
|
| 55 |
# Determine the few-shot type (ZS or FS) based on num_fewshot
|
| 56 |
-
|
| 57 |
|
| 58 |
num_params = int(0)
|
| 59 |
num_params_billion = config.get("num_params_billion")
|
|
@@ -68,12 +72,12 @@ class EvalResult:
|
|
| 68 |
org = None
|
| 69 |
model = org_and_model[0]
|
| 70 |
#result_key = f"{model}_{precision.value.name}"
|
| 71 |
-
result_key = f"{model}_{
|
| 72 |
else:
|
| 73 |
org = org_and_model[0]
|
| 74 |
model = org_and_model[1]
|
| 75 |
#result_key = f"{org}_{model}_{precision.value.name}"
|
| 76 |
-
result_key = f"{org}_{model}_{
|
| 77 |
full_model = "/".join(org_and_model)
|
| 78 |
|
| 79 |
still_on_hub, _, model_config = is_model_on_hub(
|
|
@@ -107,8 +111,8 @@ class EvalResult:
|
|
| 107 |
model=model,
|
| 108 |
results=results,
|
| 109 |
average_CPS=average_CPS,
|
| 110 |
-
|
| 111 |
-
|
| 112 |
revision= config.get("model_sha", ""),
|
| 113 |
still_on_hub=still_on_hub,
|
| 114 |
architecture=architecture,
|
|
@@ -137,8 +141,8 @@ class EvalResult:
|
|
| 137 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 138 |
average = self.average_CPS
|
| 139 |
|
| 140 |
-
|
| 141 |
-
self.
|
| 142 |
)
|
| 143 |
|
| 144 |
data_dict = {
|
|
@@ -148,13 +152,13 @@ class EvalResult:
|
|
| 148 |
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
| 149 |
#AutoEvalColumn.model_type.name: self.model_type.value.name if self.model_type else "Unknown",
|
| 150 |
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol if self.model_type else "Unknown",
|
| 151 |
-
AutoEvalColumn.
|
| 152 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 153 |
AutoEvalColumn.architecture.name: self.architecture,
|
| 154 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 155 |
AutoEvalColumn.revision.name: self.revision,
|
| 156 |
AutoEvalColumn.average.name: average,
|
| 157 |
-
|
| 158 |
AutoEvalColumn.license.name: self.license,
|
| 159 |
AutoEvalColumn.likes.name: self.likes,
|
| 160 |
AutoEvalColumn.params.name: self.num_params,
|
|
|
|
| 25 |
revision: str # commit hash, "" if main
|
| 26 |
results: Dict[str, Union[float, int]] # float o int
|
| 27 |
average_CPS: float
|
| 28 |
+
is_5fewshot: bool
|
| 29 |
+
fewshot_symbol: FewShotType = FewShotType.Unknown
|
| 30 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
| 31 |
architecture: str = "Unknown"
|
| 32 |
license: str = "?"
|
|
|
|
| 47 |
# Ottieni average_CPS come float
|
| 48 |
average_CPS = float(data.get('average_CPS', 0.0)) # 0.0 come valore di default
|
| 49 |
|
| 50 |
+
fewshot = config.get("num_fewshot", False) # Imposta il valore predefinito a 0
|
| 51 |
+
|
| 52 |
try:
|
| 53 |
+
if fewshot == "5":
|
| 54 |
+
is_5fewshot = True
|
| 55 |
+
else:
|
| 56 |
+
is_5fewshot = False# Converte in intero se possibile
|
| 57 |
except ValueError:
|
| 58 |
+
is_5fewshot = False # Se la conversione fallisce, assegna 0
|
| 59 |
# Determine the few-shot type (ZS or FS) based on num_fewshot
|
| 60 |
+
fewshot_symbol = FewShotType.from_num_fewshot(is_5fewshot) # Use the new
|
| 61 |
|
| 62 |
num_params = int(0)
|
| 63 |
num_params_billion = config.get("num_params_billion")
|
|
|
|
| 72 |
org = None
|
| 73 |
model = org_and_model[0]
|
| 74 |
#result_key = f"{model}_{precision.value.name}"
|
| 75 |
+
result_key = f"{model}_{is_5fewshot}"
|
| 76 |
else:
|
| 77 |
org = org_and_model[0]
|
| 78 |
model = org_and_model[1]
|
| 79 |
#result_key = f"{org}_{model}_{precision.value.name}"
|
| 80 |
+
result_key = f"{org}_{model}_{is_5fewshot}"
|
| 81 |
full_model = "/".join(org_and_model)
|
| 82 |
|
| 83 |
still_on_hub, _, model_config = is_model_on_hub(
|
|
|
|
| 111 |
model=model,
|
| 112 |
results=results,
|
| 113 |
average_CPS=average_CPS,
|
| 114 |
+
fewshot_symbol=fewshot_symbol,
|
| 115 |
+
is_5fewshot=is_5fewshot,
|
| 116 |
revision= config.get("model_sha", ""),
|
| 117 |
still_on_hub=still_on_hub,
|
| 118 |
architecture=architecture,
|
|
|
|
| 141 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
| 142 |
average = self.average_CPS
|
| 143 |
|
| 144 |
+
fewshot_symbol = (
|
| 145 |
+
self.fewshot_symbol.value.symbol if isinstance(self.fewshot_symbol, FewShotType) else "❓"
|
| 146 |
)
|
| 147 |
|
| 148 |
data_dict = {
|
|
|
|
| 152 |
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
| 153 |
#AutoEvalColumn.model_type.name: self.model_type.value.name if self.model_type else "Unknown",
|
| 154 |
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol if self.model_type else "Unknown",
|
| 155 |
+
AutoEvalColumn.fewshot_symbol.name: fewshot_symbol,
|
| 156 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
| 157 |
AutoEvalColumn.architecture.name: self.architecture,
|
| 158 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
| 159 |
AutoEvalColumn.revision.name: self.revision,
|
| 160 |
AutoEvalColumn.average.name: average,
|
| 161 |
+
AutoEvalColumn.is_5fewshot.name: self.is_5fewshot,
|
| 162 |
AutoEvalColumn.license.name: self.license,
|
| 163 |
AutoEvalColumn.likes.name: self.likes,
|
| 164 |
AutoEvalColumn.params.name: self.num_params,
|