Small changes
Browse files- app.py +48 -6
- src/display/utils.py +5 -4
- src/leaderboard/read_evals.py +18 -14
app.py
CHANGED
@@ -10,6 +10,7 @@ from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoE
|
|
10 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
11 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
12 |
from src.submission.submit import add_new_eval
|
|
|
13 |
|
14 |
# Define task metadata (icons, names, descriptions)
|
15 |
TASK_METADATA_MULTIPLECHOICE = {
|
@@ -35,7 +36,10 @@ def restart_space():
|
|
35 |
|
36 |
|
37 |
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
38 |
-
"""
|
|
|
|
|
|
|
39 |
if dataframe is None or dataframe.empty:
|
40 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
41 |
|
@@ -52,13 +56,50 @@ def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
|
52 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
53 |
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
54 |
filter_columns=[
|
55 |
-
ColumnFilter(AutoEvalColumn.
|
|
|
|
|
56 |
# ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),
|
57 |
],
|
58 |
-
|
|
|
|
|
|
|
|
|
59 |
interactive=False,
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
'''
|
63 |
# Helper function for leaderboard initialization
|
64 |
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
@@ -137,7 +178,7 @@ with demo:
|
|
137 |
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
138 |
gr.Markdown(task_description, elem_classes="markdown-text")
|
139 |
|
140 |
-
leaderboard =
|
141 |
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
|
142 |
default_selection=['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'],
|
143 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']]
|
@@ -153,7 +194,7 @@ with demo:
|
|
153 |
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
154 |
gr.Markdown(task_description, elem_classes="markdown-text")
|
155 |
|
156 |
-
leaderboard =
|
157 |
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average",
|
158 |
f"{task} Best Prompt": "Best Prompt",
|
159 |
f"{task} Best Prompt Id": "Best Prompt Id",
|
@@ -175,4 +216,5 @@ scheduler.add_job(restart_space, "interval", seconds=1800)
|
|
175 |
scheduler.start()
|
176 |
|
177 |
# Launch the app with concurrent queueing
|
178 |
-
demo.queue(default_concurrency_limit=40).launch(
|
|
|
|
10 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
11 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
12 |
from src.submission.submit import add_new_eval
|
13 |
+
import random
|
14 |
|
15 |
# Define task metadata (icons, names, descriptions)
|
16 |
TASK_METADATA_MULTIPLECHOICE = {
|
|
|
36 |
|
37 |
|
38 |
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
39 |
+
"""
|
40 |
+
Initialize and return the leaderboard when it is first loaded or when 'benchmark' is selected.
|
41 |
+
The table is sorted based on the "Avg. Combined Performance" field.
|
42 |
+
"""
|
43 |
if dataframe is None or dataframe.empty:
|
44 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
45 |
|
|
|
56 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
57 |
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
58 |
filter_columns=[
|
59 |
+
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),
|
60 |
+
#ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)",
|
61 |
+
# default=[["0️⃣", "0️⃣"]]),
|
62 |
# ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),
|
63 |
],
|
64 |
+
#filter_columns=[
|
65 |
+
# ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
|
66 |
+
# #ColumnFilter("FS", type="dropdown", label="5-Few-Shot")
|
67 |
+
#],
|
68 |
+
bool_checkboxgroup_label="Evaluation Mode",
|
69 |
interactive=False,
|
70 |
)
|
71 |
|
72 |
+
def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
73 |
+
"""
|
74 |
+
Update and return the leaderboard when a specific task is selected.
|
75 |
+
The table is sorted based on the "Combined Performance" field.
|
76 |
+
"""
|
77 |
+
if dataframe is None or dataframe.empty:
|
78 |
+
raise ValueError("Leaderboard DataFrame is empty or None.")
|
79 |
+
|
80 |
+
sorted_dataframe = dataframe.sort_values(by="Combined Performance", ascending=False)
|
81 |
+
|
82 |
+
#print(sorted_dataframe['Combined Performance'])
|
83 |
+
|
84 |
+
field_list = fields(AutoEvalColumn)
|
85 |
+
|
86 |
+
return Leaderboard(
|
87 |
+
value=sorted_dataframe,
|
88 |
+
datatype=[c.type for c in field_list],
|
89 |
+
#select_columns=SelectColumns(
|
90 |
+
# default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
|
91 |
+
# cant_deselect=[c.name for c in field_list if c.never_hidden],
|
92 |
+
# label="Select Columns to Display:",
|
93 |
+
#),
|
94 |
+
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
95 |
+
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
96 |
+
filter_columns=[
|
97 |
+
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),
|
98 |
+
],
|
99 |
+
bool_checkboxgroup_label="Evaluation Mode",
|
100 |
+
interactive=False
|
101 |
+
)
|
102 |
+
|
103 |
'''
|
104 |
# Helper function for leaderboard initialization
|
105 |
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
|
|
178 |
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
179 |
gr.Markdown(task_description, elem_classes="markdown-text")
|
180 |
|
181 |
+
leaderboard = update_task_leaderboard(
|
182 |
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
|
183 |
default_selection=['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id'],
|
184 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['FS', 'Model', 'Combined Performance', 'Prompt Average', 'Best Prompt', 'Best Prompt Id']]
|
|
|
194 |
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
|
195 |
gr.Markdown(task_description, elem_classes="markdown-text")
|
196 |
|
197 |
+
leaderboard = update_task_leaderboard(
|
198 |
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average",
|
199 |
f"{task} Best Prompt": "Best Prompt",
|
200 |
f"{task} Best Prompt Id": "Best Prompt Id",
|
|
|
216 |
scheduler.start()
|
217 |
|
218 |
# Launch the app with concurrent queueing
|
219 |
+
demo.queue(default_concurrency_limit=40).launch(debug=True, # Enable Gradio debug mode
|
220 |
+
show_error=True)
|
src/display/utils.py
CHANGED
@@ -25,7 +25,8 @@ auto_eval_column_dict = []
|
|
25 |
# Init
|
26 |
#auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
|
28 |
-
auto_eval_column_dict.append(["
|
|
|
29 |
|
30 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
31 |
#auto_eval_column_dict.append(["fewshot", ColumnContent, ColumnContent("Few-Shot", "str", True)])
|
@@ -103,11 +104,11 @@ class FewShotType(Enum):
|
|
103 |
return f"{self.value.symbol}{separator}{self.value.name}"
|
104 |
|
105 |
@staticmethod
|
106 |
-
def from_num_fewshot(
|
107 |
"""Determines FewShotType based on num_fewshot."""
|
108 |
-
if
|
109 |
return FewShotType.ZS
|
110 |
-
|
111 |
return FewShotType.FS
|
112 |
return FewShotType.Unknown
|
113 |
|
|
|
25 |
# Init
|
26 |
#auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
27 |
|
28 |
+
auto_eval_column_dict.append(["fewshot_symbol", ColumnContent, ColumnContent("FS", "str", True, never_hidden=True)])
|
29 |
+
auto_eval_column_dict.append(["is_5fewshot", ColumnContent, ColumnContent("IS_FS", "bool", True)])
|
30 |
|
31 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
32 |
#auto_eval_column_dict.append(["fewshot", ColumnContent, ColumnContent("Few-Shot", "str", True)])
|
|
|
104 |
return f"{self.value.symbol}{separator}{self.value.name}"
|
105 |
|
106 |
@staticmethod
|
107 |
+
def from_num_fewshot(is_5fewshot):
|
108 |
"""Determines FewShotType based on num_fewshot."""
|
109 |
+
if is_5fewshot is False:
|
110 |
return FewShotType.ZS
|
111 |
+
elif is_5fewshot is True:
|
112 |
return FewShotType.FS
|
113 |
return FewShotType.Unknown
|
114 |
|
src/leaderboard/read_evals.py
CHANGED
@@ -25,8 +25,8 @@ class EvalResult:
|
|
25 |
revision: str # commit hash, "" if main
|
26 |
results: Dict[str, Union[float, int]] # float o int
|
27 |
average_CPS: float
|
28 |
-
|
29 |
-
|
30 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
31 |
architecture: str = "Unknown"
|
32 |
license: str = "?"
|
@@ -47,13 +47,17 @@ class EvalResult:
|
|
47 |
# Ottieni average_CPS come float
|
48 |
average_CPS = float(data.get('average_CPS', 0.0)) # 0.0 come valore di default
|
49 |
|
50 |
-
|
|
|
51 |
try:
|
52 |
-
|
|
|
|
|
|
|
53 |
except ValueError:
|
54 |
-
|
55 |
# Determine the few-shot type (ZS or FS) based on num_fewshot
|
56 |
-
|
57 |
|
58 |
num_params = int(0)
|
59 |
num_params_billion = config.get("num_params_billion")
|
@@ -68,12 +72,12 @@ class EvalResult:
|
|
68 |
org = None
|
69 |
model = org_and_model[0]
|
70 |
#result_key = f"{model}_{precision.value.name}"
|
71 |
-
result_key = f"{model}_{
|
72 |
else:
|
73 |
org = org_and_model[0]
|
74 |
model = org_and_model[1]
|
75 |
#result_key = f"{org}_{model}_{precision.value.name}"
|
76 |
-
result_key = f"{org}_{model}_{
|
77 |
full_model = "/".join(org_and_model)
|
78 |
|
79 |
still_on_hub, _, model_config = is_model_on_hub(
|
@@ -107,8 +111,8 @@ class EvalResult:
|
|
107 |
model=model,
|
108 |
results=results,
|
109 |
average_CPS=average_CPS,
|
110 |
-
|
111 |
-
|
112 |
revision= config.get("model_sha", ""),
|
113 |
still_on_hub=still_on_hub,
|
114 |
architecture=architecture,
|
@@ -137,8 +141,8 @@ class EvalResult:
|
|
137 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
138 |
average = self.average_CPS
|
139 |
|
140 |
-
|
141 |
-
self.
|
142 |
)
|
143 |
|
144 |
data_dict = {
|
@@ -148,13 +152,13 @@ class EvalResult:
|
|
148 |
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
149 |
#AutoEvalColumn.model_type.name: self.model_type.value.name if self.model_type else "Unknown",
|
150 |
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol if self.model_type else "Unknown",
|
151 |
-
AutoEvalColumn.
|
152 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
153 |
AutoEvalColumn.architecture.name: self.architecture,
|
154 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
155 |
AutoEvalColumn.revision.name: self.revision,
|
156 |
AutoEvalColumn.average.name: average,
|
157 |
-
|
158 |
AutoEvalColumn.license.name: self.license,
|
159 |
AutoEvalColumn.likes.name: self.likes,
|
160 |
AutoEvalColumn.params.name: self.num_params,
|
|
|
25 |
revision: str # commit hash, "" if main
|
26 |
results: Dict[str, Union[float, int]] # float o int
|
27 |
average_CPS: float
|
28 |
+
is_5fewshot: bool
|
29 |
+
fewshot_symbol: FewShotType = FewShotType.Unknown
|
30 |
weight_type: WeightType = WeightType.Original # Original or Adapter
|
31 |
architecture: str = "Unknown"
|
32 |
license: str = "?"
|
|
|
47 |
# Ottieni average_CPS come float
|
48 |
average_CPS = float(data.get('average_CPS', 0.0)) # 0.0 come valore di default
|
49 |
|
50 |
+
fewshot = config.get("num_fewshot", False) # Imposta il valore predefinito a 0
|
51 |
+
|
52 |
try:
|
53 |
+
if fewshot == "5":
|
54 |
+
is_5fewshot = True
|
55 |
+
else:
|
56 |
+
is_5fewshot = False# Converte in intero se possibile
|
57 |
except ValueError:
|
58 |
+
is_5fewshot = False # Se la conversione fallisce, assegna 0
|
59 |
# Determine the few-shot type (ZS or FS) based on num_fewshot
|
60 |
+
fewshot_symbol = FewShotType.from_num_fewshot(is_5fewshot) # Use the new
|
61 |
|
62 |
num_params = int(0)
|
63 |
num_params_billion = config.get("num_params_billion")
|
|
|
72 |
org = None
|
73 |
model = org_and_model[0]
|
74 |
#result_key = f"{model}_{precision.value.name}"
|
75 |
+
result_key = f"{model}_{is_5fewshot}"
|
76 |
else:
|
77 |
org = org_and_model[0]
|
78 |
model = org_and_model[1]
|
79 |
#result_key = f"{org}_{model}_{precision.value.name}"
|
80 |
+
result_key = f"{org}_{model}_{is_5fewshot}"
|
81 |
full_model = "/".join(org_and_model)
|
82 |
|
83 |
still_on_hub, _, model_config = is_model_on_hub(
|
|
|
111 |
model=model,
|
112 |
results=results,
|
113 |
average_CPS=average_CPS,
|
114 |
+
fewshot_symbol=fewshot_symbol,
|
115 |
+
is_5fewshot=is_5fewshot,
|
116 |
revision= config.get("model_sha", ""),
|
117 |
still_on_hub=still_on_hub,
|
118 |
architecture=architecture,
|
|
|
141 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
142 |
average = self.average_CPS
|
143 |
|
144 |
+
fewshot_symbol = (
|
145 |
+
self.fewshot_symbol.value.symbol if isinstance(self.fewshot_symbol, FewShotType) else "❓"
|
146 |
)
|
147 |
|
148 |
data_dict = {
|
|
|
152 |
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
|
153 |
#AutoEvalColumn.model_type.name: self.model_type.value.name if self.model_type else "Unknown",
|
154 |
#AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol if self.model_type else "Unknown",
|
155 |
+
AutoEvalColumn.fewshot_symbol.name: fewshot_symbol,
|
156 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
157 |
AutoEvalColumn.architecture.name: self.architecture,
|
158 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
159 |
AutoEvalColumn.revision.name: self.revision,
|
160 |
AutoEvalColumn.average.name: average,
|
161 |
+
AutoEvalColumn.is_5fewshot.name: self.is_5fewshot,
|
162 |
AutoEvalColumn.license.name: self.license,
|
163 |
AutoEvalColumn.likes.name: self.likes,
|
164 |
AutoEvalColumn.params.name: self.num_params,
|