File size: 16,621 Bytes
cae4d0f 5b04d4e cae4d0f 5888550 c8225f5 cae4d0f 7a90675 dbd3b18 7a90675 dbd3b18 cae4d0f ea6af72 5888550 ea6af72 13fe545 ea6af72 13fe545 ea6af72 7a90675 ea6af72 5888550 7a90675 ea6af72 5888550 ea6af72 5888550 13fe545 c8225f5 5888550 13fe545 5888550 ea6af72 cae4d0f dbd3b18 cae4d0f ea6af72 cae4d0f 13fe545 cae4d0f 490893b cae4d0f ea6af72 cae4d0f 7a90675 dbd3b18 cae4d0f 13fe545 cae4d0f af6e747 c8225f5 cae4d0f 7a90675 cae4d0f 7a90675 cae4d0f 5888550 67324c2 13fe545 cae4d0f 7a90675 5888550 7a90675 67324c2 7a90675 13fe545 7a90675 13fe545 7a90675 cae4d0f 490893b 6927b6c 490893b cae4d0f 5888550 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src.display.css_html_js import custom_css
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import random
import matplotlib.pyplot as plt
import re
import plotly.express as px
import plotly.graph_objects as go
def line_chart(dataframe):
# Separiamo i dati in base a IS_FS
df_true = dataframe[dataframe['IS_FS'] == True]
df_false = dataframe[dataframe['IS_FS'] == False]
# Estrai valori x, y e labels per True e False
x_true = df_true['#Params (B)'].tolist()
y_true = df_true['Avg. Combined Performance β¬οΈ'].tolist()
labels_true = [
re.search(r'>([^<>/]+/[^<>]+)<', m).group(1).split('/')[-1]
for m in df_true['Model'].tolist()
]
x_false = df_false['#Params (B)'].tolist()
y_false = df_false['Avg. Combined Performance β¬οΈ'].tolist()
labels_false = [
re.search(r'>([^<>/]+/[^<>]+)<', m).group(1).split('/')[-1]
for m in df_false['Model'].tolist()
]
fig = go.Figure()
# Punti IS_FS=True
fig.add_trace(go.Scatter(
x=x_true,
y=y_true,
mode='markers', # solo marker, niente testo
name='5-Few-Shot',
marker=dict(color='red', size=10),
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
customdata=labels_true # tutte le informazioni sul hover
))
# Punti IS_FS=False
fig.add_trace(go.Scatter(
x=x_false,
y=y_false,
mode='markers',
name='0-Shot',
marker=dict(color='blue', size=10),
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
customdata=labels_false
))
fig.update_layout(
title="Avg. Combined Performance vs #Params",
xaxis_title="#Params (B)",
yaxis_title="Avg. Combined Performance β¬οΈ",
template="plotly_white",
hovermode="closest",
dragmode=False
)
# Disabilita lo zoom e altri controlli
fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
fig.update_yaxes(fixedrange=True)
return fig
# Define task metadata (icons, names, descriptions)
TASK_METADATA_MULTIPLECHOICE = {
"TE": {"icon": "π", "name": "Textual Entailment", "tooltip": ""},
"SA": {"icon": "π", "name": "Sentiment Analysis", "tooltip": ""},
"HS": {"icon": "β οΈ", "name": "Hate Speech", "tooltip": ""},
"AT": {"icon": "π₯", "name": "Admission Test", "tooltip": ""},
"WIC": {"icon": "π€", "name": "Word in Context", "tooltip": ""},
"FAQ": {"icon": "β", "name": "Frequently Asked Questions", "tooltip": ""}
}
# Define task metadata (icons, names, descriptions)
TASK_METADATA_GENERATIVE = {
"LS": {"icon": "π", "name": "Lexical Substitution", "tooltip": ""},
"SU": {"icon": "π", "name": "Summarization", "tooltip": ""},
"NER": {"icon": "π·οΈ", "name": "Named Entity Recognition", "tooltip": ""},
"REL": {"icon": "π", "name": "Relation Extraction", "tooltip": ""},
}
def restart_space():
"""Restart the Hugging Face space."""
API.restart_space(repo_id=REPO_ID)
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""
Initialize and return the leaderboard when it is first loaded or when 'benchmark' is selected.
The table is sorted based on the "Avg. Combined Performance" field.
"""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
sorted_dataframe = dataframe.sort_values(by="Avg. Combined Performance β¬οΈ", ascending=False)
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
sorted_dataframe["rank"] = sorted_dataframe.index + 1
# aggiungi la corona accanto al nome del modello se il rank Γ¨ 1
sorted_dataframe["Model"] = sorted_dataframe.apply(
lambda row: f"{row['Model']} π₯" if row["rank"] == 1 else
(f"{row['Model']} π₯" if row["rank"] == 2 else
(f"{row['Model']} π₯" if row["rank"] == 3 else row["Model"])),
axis=1
)
field_list = fields(AutoEvalColumn)
return Leaderboard(
value=sorted_dataframe,
datatype=[c.type for c in field_list],
#select_columns=SelectColumns(
# default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
# cant_deselect=[c.name for c in field_list if c.never_hidden],
# label="Select Columns to Display:",
#),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),
#ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)",
# default=[["0οΈβ£", "0οΈβ£"]]),
# ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),
],
#filter_columns=[
# ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
# #ColumnFilter("FS", type="dropdown", label="5-Few-Shot")
#],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False,
)
def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""
Update and return the leaderboard when a specific task is selected.
The table is sorted based on the "Combined Performance" field.
"""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
sorted_dataframe = dataframe.sort_values(by="Combined Performance", ascending=False)
# aggiungo la colonna rank in base alla posizione
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
sorted_dataframe["rank"] = sorted_dataframe.index + 1
# aggiungi la corona accanto al nome del modello se il rank Γ¨ 1
sorted_dataframe["Model"] = sorted_dataframe.apply(
lambda row: f"{row['Model']} π₯" if row["rank"] == 1 else
(f"{row['Model']} π₯" if row["rank"] == 2 else
(f"{row['Model']} π₯" if row["rank"] == 3 else row["Model"])),
axis=1
)
pd.set_option('display.max_colwidth', None)
#print("========================", dataframe['Model'])
#print(sorted_dataframe['Combined Performance'])
field_list = fields(AutoEvalColumn)
return Leaderboard(
value=sorted_dataframe,
#datatype=[c.type for c in field_list],
datatype=[c.type for c in field_list] + [int],
#select_columns=SelectColumns(
# default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
# cant_deselect=[c.name for c in field_list if c.never_hidden],
# label="Select Columns to Display:",
#),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),
],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False
)
'''
# Helper function for leaderboard initialization
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""Initialize and return a leaderboard."""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_type.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
'''
def download_snapshot(repo, local_dir):
"""Try to download a snapshot from Hugging Face Hub."""
try:
print(f"Downloading from {repo} to {local_dir}...")
snapshot_download(repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN)
except Exception as e:
print(f"Error downloading {repo}: {e}")
restart_space()
# Initialize the app by downloading snapshots
download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
# Load leaderboard data
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
#print(LEADERBOARD_DF.columns.tolist())
# Prepare the main interface
demo = gr.Blocks(css=custom_css)
with demo:
#gr.HTML(TITLE)
gr.HTML(
"""
<div style="display: flex; align-items: center; position: relative; width: 100%; height: 50px;">
<h1 style="margin: 0 auto; font-weight: 700;">EVALITA-LLM Leaderboard</h1>
<a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank"
style="position: absolute; right: 0; display: inline-flex; align-items: center; gap: 6px; text-decoration: none; color: #1f77b4;">
<!-- Icona stilizzata -->
<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="#1f77b4" viewBox="0 0 24 24">
<path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>
<path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>
</svg>
Open Italian LLM Leaderboard
</a>
</div>
"""
)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# Main leaderboard tab
with gr.TabItem("π
Benchmark"):
leaderboard = init_leaderboard(
LEADERBOARD_DF,
default_selection=['rank', 'FS', 'Model', "Avg. Combined Performance β¬οΈ", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['rank', 'FS', 'Model', "Avg. Combined Performance β¬οΈ", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
)
with gr.TabItem("π Charts"):
#gr.Plot(value=line_chart(LEADERBOARD_DF), label="Andamento di esempio")
#gr.Plot(value=line_chart_interactive_test(), label="Andamento interattivo")
gr.Plot(value=line_chart(LEADERBOARD_DF))
# About tab
with gr.TabItem("π About"):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# About tab
with gr.TabItem("β", interactive=False):
gr.Markdown("", elem_classes="markdown-text")
# Task-specific leaderboards
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Prompt Std": "Prompt Std", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
default_selection=['rank', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['rank', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id']]
)
# About tab
with gr.TabItem("β", interactive=False):
gr.Markdown("", elem_classes="markdown-text")
# Task-specific leaderboards
for task, metadata in TASK_METADATA_GENERATIVE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average",
f"{task} Prompt Std": "Prompt Std",
f"{task} Best Prompt": "Best Prompt",
f"{task} Best Prompt Id": "Best Prompt Id",
task: "Combined Performance"}),
default_selection=['rank', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt',
'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['rank', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std',
'Best Prompt', 'Best Prompt Id']]
)
# Citation section
with gr.Accordion("π Citation", open=False):
gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)
with gr.Accordion("π Credits", open=False):
gr.Markdown(
"""
**This project has benefited from the following support:**
- π§ **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.
- πΆ **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.
- π₯οΈ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.
"""
)
# Background job to restart space
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
# Launch the app with concurrent queueing
demo.queue(default_concurrency_limit=40).launch(debug=True, # Enable Gradio debug mode
show_error=True) |