polymer-aging-ml / modules /training_ui.py
devjas1
(FEAT)[Refactor Confidence Visualization and Update CSS]: Remove legacy confidence progress HTML function, enhance softmax confidence calculation, and implement theme-aware custom styles for better UI consistency.
7bc29cd
"""
Training UI components for the ML Hub functionality.
Provides interface for model training, dataset management, and progress tracking.
"""
import os
import time
import torch
import streamlit as st
import pandas as pd
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from pathlib import Path
from typing import Dict, List, Optional
import json
from datetime import datetime, timedelta
from models.registry import choices as model_choices, get_model_info
from utils.training_manager import get_training_manager, TrainingJob
from utils.training_types import TrainingConfig, TrainingStatus
def render_training_tab():
"""Render the main training interface tab"""
st.markdown("## 🎯 Model Training Hub")
st.markdown(
"Train any model from the registry on your datasets with real-time progress tracking."
)
# Create columns for layout
config_col, status_col = st.columns([1, 1])
with config_col:
render_training_configuration()
with status_col:
render_training_status()
# Full-width progress and results section
st.markdown("---")
render_training_progress()
st.markdown("---")
render_training_history()
def render_training_configuration():
"""Render training configuration panel"""
st.markdown("### ⚙️ Training Configuration")
with st.expander("Model Selection", expanded=True):
# Model selection
available_models = model_choices()
selected_model = st.selectbox(
"Select Model Architecture",
available_models,
help="Choose from available model architectures in the registry",
)
# Store in session state
st.session_state["selected_model"] = selected_model
# Display model info
if selected_model:
try:
model_info = get_model_info(selected_model)
st.info(
f"**{selected_model}**: {model_info.get('description', 'No description available')}"
)
# Model specs
col1, col2 = st.columns(2)
with col1:
st.metric("Parameters", model_info.get("parameters", "Unknown"))
st.metric("Speed", model_info.get("speed", "Unknown"))
with col2:
if "performance" in model_info:
perf = model_info["performance"]
st.metric("Accuracy", f"{perf.get('accuracy', 0):.3f}")
st.metric("F1 Score", f"{perf.get('f1_score', 0):.3f}")
except KeyError:
st.warning(f"Model info not available for {selected_model}")
with st.expander("Dataset Selection", expanded=True):
render_dataset_selection()
with st.expander("Training Parameters", expanded=True):
render_training_parameters()
# Training action button
st.markdown("---")
if st.button("🚀 Start Training", type="primary", use_container_width=True):
start_training_job()
def render_dataset_selection():
"""Render dataset selection and upload interface"""
st.markdown("#### Dataset Management")
# Dataset source selection
dataset_source = st.radio(
"Dataset Source",
["Upload New Dataset", "Use Existing Dataset"],
horizontal=True,
)
if dataset_source == "Upload New Dataset":
render_dataset_upload()
else:
render_existing_dataset_selection()
def render_dataset_upload():
"""Render dataset upload interface"""
with st.expander("ℹ️ How to Prepare Your Dataset for Training"):
st.markdown(
"""
For the model to train correctly, your dataset needs to be structured properly.
**1. File Naming & Labeling:**
The system can infer the class (`stable` or `weathered`) from the filename. For example, a file named `stable_polymer_1.txt` or `weathered_sample.csv` will be automatically categorized.
Alternatively, you can upload all your files regardless of name and use the labeling tool that appears below to manually assign each file to a class.
**2. File Format:**
- Each file should contain a single spectrum.
- The format should be two columns: **Wavenumber** and **Intensity**.
- Supported file types: `.txt`, `.csv`, `.json`.
**3. Finding Data:**
If you need data, here are some great public resources to get started:
- **Open Specy**: A large, community-driven library for Raman and FTIR spectra.
- **RRUFF™ Project**: An integrated database of Raman spectra, X-ray diffraction, and chemistry data for minerals.
- **NIST Chemistry WebBook**: Contains FTIR spectra for many chemical compounds.
- **GitHub & Kaggle**: Search for "polymer spectroscopy dataset", "Raman spectra plastic", or "FTIR microplastics".
When using public data, you may need to manually classify and organize the files into the `stable`/`weathered` structure based on the sample descriptions provided with the dataset.
"""
)
st.markdown("##### Upload Dataset")
uploaded_files = st.file_uploader(
"Upload spectrum files (.txt, .csv, .json)",
accept_multiple_files=True,
type=["txt", "csv", "json"],
help="Upload multiple spectrum files. Organize them in folders named 'stable' and 'weathered' or label them accordingly.",
)
if uploaded_files:
st.success(f"✅ {len(uploaded_files)} files uploaded")
# Dataset organization
st.markdown("##### Dataset Organization")
dataset_name = st.text_input(
"Dataset Name",
placeholder="e.g., my_polymer_dataset",
help="Name for your dataset (will create a folder)",
)
# File labeling
st.markdown("**Label your files:**")
file_labels = {}
for i, file in enumerate(uploaded_files[:10]): # Limit display for performance
col1, col2 = st.columns([2, 1])
with col1:
st.text(file.name)
with col2:
file_labels[file.name] = st.selectbox(
f"Label for {file.name}", ["stable", "weathered"], key=f"label_{i}"
)
if len(uploaded_files) > 10:
st.info(
f"Showing first 10 files. {len(uploaded_files) - 10} more files will use default labeling based on filename."
)
if st.button("💾 Save Dataset") and dataset_name:
save_uploaded_dataset(uploaded_files, dataset_name, file_labels)
def render_existing_dataset_selection():
"""Render existing dataset selection"""
st.markdown("##### Available Datasets")
# Scan for existing datasets
datasets_dir = Path("datasets")
if datasets_dir.exists():
available_datasets = [d.name for d in datasets_dir.iterdir() if d.is_dir()]
if available_datasets:
selected_dataset = st.selectbox(
"Select Dataset",
available_datasets,
help="Choose from previously uploaded or existing datasets",
)
if selected_dataset:
st.session_state["selected_dataset"] = str(
datasets_dir / selected_dataset
)
display_dataset_info(datasets_dir / selected_dataset)
else:
st.warning("No datasets found. Please upload a dataset first.")
else:
st.warning("Datasets directory not found. Please upload a dataset first.")
def display_dataset_info(dataset_path: Path):
"""Display information about selected dataset"""
if not dataset_path.exists():
return
# Count files by category
file_counts = {}
total_files = 0
for category_dir in dataset_path.iterdir():
if category_dir.is_dir():
count = (
len(list(category_dir.glob("*.txt")))
+ len(list(category_dir.glob("*.csv")))
+ len(list(category_dir.glob("*.json")))
)
file_counts[category_dir.name] = count
total_files += count
if file_counts:
st.info(f"**Dataset**: {dataset_path.name}")
col1, col2 = st.columns(2)
with col1:
st.metric("Total Files", total_files)
with col2:
st.metric("Categories", len(file_counts))
# Display breakdown
for category, count in file_counts.items():
st.text(f"• {category}: {count} files")
def render_training_parameters():
"""Render training parameter configuration with enhanced options"""
st.markdown("#### Training Parameters")
col1, col2 = st.columns(2)
with col1:
epochs = st.number_input("Epochs", min_value=1, max_value=100, value=10)
batch_size = st.selectbox("Batch Size", [8, 16, 32, 64], index=1)
learning_rate = st.select_slider(
"Learning Rate",
options=[1e-4, 5e-4, 1e-3, 5e-3, 1e-2],
value=1e-3,
format_func=lambda x: f"{x:.0e}",
)
with col2:
num_folds = st.number_input(
"Cross-Validation Folds", min_value=3, max_value=10, value=10
)
target_len = st.number_input(
"Target Length", min_value=100, max_value=1000, value=500
)
modality = st.selectbox("Modality", ["raman", "ftir"], index=0)
# Advanced Cross-Validation Options
st.markdown("**Cross-Validation Strategy**")
cv_strategy = st.selectbox(
"CV Strategy",
["stratified_kfold", "kfold", "time_series_split"],
index=0,
help="Choose CV strategy: Stratified K-Fold (recommended for balanced datasets), K-Fold (for any dataset), Time Series Split (for temporal data)",
)
# Data Augmentation Options
st.markdown("**Data Augmentation**")
col1, col2 = st.columns(2)
with col1:
enable_augmentation = st.checkbox(
"Enable Spectral Augmentation",
value=False,
help="Add realistic noise and variations to improve model robustness",
)
with col2:
noise_level = st.slider(
"Noise Level",
min_value=0.001,
max_value=0.05,
value=0.01,
step=0.001,
disabled=not enable_augmentation,
help="Amount of Gaussian noise to add for augmentation",
)
# Spectroscopy-Specific Options
st.markdown("**Spectroscopy-Specific Settings**")
spectral_weight = st.slider(
"Spectral Metrics Weight",
min_value=0.0,
max_value=1.0,
value=0.1,
step=0.05,
help="Weight for spectroscopy-specific metrics (cosine similarity, peak matching)",
)
# Preprocessing options
st.markdown("**Preprocessing Options**")
col1, col2, col3 = st.columns(3)
with col1:
baseline_correction = st.checkbox("Baseline Correction", value=True)
with col2:
smoothing = st.checkbox("Smoothing", value=True)
with col3:
normalization = st.checkbox("Normalization", value=True)
# Device selection
device_options = ["auto", "cpu"]
if torch.cuda.is_available():
device_options.append("cuda")
device = st.selectbox("Device", device_options, index=0)
# Store parameters in session state
st.session_state.update(
{
"train_epochs": epochs,
"train_batch_size": batch_size,
"train_learning_rate": learning_rate,
"train_num_folds": num_folds,
"train_target_len": target_len,
"train_modality": modality,
"train_cv_strategy": cv_strategy,
"train_enable_augmentation": enable_augmentation,
"train_noise_level": noise_level,
"train_spectral_weight": spectral_weight,
"train_baseline_correction": baseline_correction,
"train_smoothing": smoothing,
"train_normalization": normalization,
"train_device": device,
}
)
def render_training_status():
"""Render training status and active jobs"""
st.markdown("### 📊 Training Status")
training_manager = get_training_manager()
# Active jobs
active_jobs = training_manager.list_jobs(TrainingStatus.RUNNING)
pending_jobs = training_manager.list_jobs(TrainingStatus.PENDING)
if active_jobs or pending_jobs:
st.markdown("#### Active Jobs")
for job in active_jobs + pending_jobs:
render_job_status_card(job)
# Recent completed jobs
completed_jobs = training_manager.list_jobs(TrainingStatus.COMPLETED)[
:3
] # Show last 3
if completed_jobs:
st.markdown("#### Recent Completed")
for job in completed_jobs:
render_job_status_card(job, compact=True)
def render_job_status_card(job: TrainingJob, compact: bool = False):
"""Render a status card for a training job"""
status_color = {
TrainingStatus.PENDING: "🟡",
TrainingStatus.RUNNING: "🔵",
TrainingStatus.COMPLETED: "🟢",
TrainingStatus.FAILED: "🔴",
TrainingStatus.CANCELLED: "⚫",
}
with st.expander(
f"{status_color[job.status]} {job.config.model_name} - {job.job_id[:8]}",
expanded=not compact,
):
if not compact:
col1, col2 = st.columns(2)
with col1:
st.text(f"Model: {job.config.model_name}")
st.text(f"Dataset: {Path(job.config.dataset_path).name}")
st.text(f"Status: {job.status.value}")
with col2:
st.text(f"Created: {job.created_at.strftime('%H:%M:%S')}")
if job.status == TrainingStatus.RUNNING:
st.text(
f"Fold: {job.progress.current_fold}/{job.progress.total_folds}"
)
st.text(
f"Epoch: {job.progress.current_epoch}/{job.progress.total_epochs}"
)
if job.status == TrainingStatus.RUNNING:
# Progress bars
fold_progress = job.progress.current_fold / job.progress.total_folds
epoch_progress = job.progress.current_epoch / job.progress.total_epochs
st.progress(fold_progress)
st.caption(
f"Overall: {fold_progress:.1%} | Current Loss: {job.progress.current_loss:.4f}"
)
elif job.status == TrainingStatus.COMPLETED and job.progress.fold_accuracies:
mean_acc = np.mean(job.progress.fold_accuracies)
std_acc = np.std(job.progress.fold_accuracies)
st.success(f"✅ Accuracy: {mean_acc:.3f} ± {std_acc:.3f}")
elif job.status == TrainingStatus.FAILED:
st.error(f"❌ Error: {job.error_message}")
def render_training_progress():
"""Render detailed training progress visualization"""
st.markdown("### 📈 Training Progress")
training_manager = get_training_manager()
active_jobs = training_manager.list_jobs(TrainingStatus.RUNNING)
if not active_jobs:
st.info("No active training jobs. Start a training job to see progress here.")
return
# Job selector for multiple active jobs
if len(active_jobs) > 1:
selected_job_id = st.selectbox(
"Select Job to Monitor",
[job.job_id for job in active_jobs],
format_func=lambda x: f"{x[:8]} - {next(job.config.model_name for job in active_jobs if job.job_id == x)}",
)
selected_job = next(job for job in active_jobs if job.job_id == selected_job_id)
else:
selected_job = active_jobs[0]
# Real-time progress visualization
render_job_progress_details(selected_job)
def render_job_progress_details(job: TrainingJob):
"""Render detailed progress for a specific job with enhanced metrics"""
col1, col2 = st.columns(2)
with col1:
st.metric(
"Current Fold", f"{job.progress.current_fold}/{job.progress.total_folds}"
)
st.metric(
"Current Epoch", f"{job.progress.current_epoch}/{job.progress.total_epochs}"
)
with col2:
st.metric("Current Loss", f"{job.progress.current_loss:.4f}")
st.metric("Current Accuracy", f"{job.progress.current_accuracy:.3f}")
# Progress bars
fold_progress = (
job.progress.current_fold / job.progress.total_folds
if job.progress.total_folds > 0
else 0
)
epoch_progress = (
job.progress.current_epoch / job.progress.total_epochs
if job.progress.total_epochs > 0
else 0
)
st.progress(fold_progress)
st.caption(f"Overall Progress: {fold_progress:.1%}")
st.progress(epoch_progress)
st.caption(f"Current Fold Progress: {epoch_progress:.1%}")
# Enhanced metrics visualization
if job.progress.fold_accuracies and job.progress.spectroscopy_metrics:
col1, col2 = st.columns(2)
with col1:
# Standard accuracy chart
fig_acc = go.Figure(
data=go.Bar(
x=[f"Fold {i+1}" for i in range(len(job.progress.fold_accuracies))],
y=job.progress.fold_accuracies,
name="Validation Accuracy",
marker_color="lightblue",
)
)
fig_acc.update_layout(
title="Cross-Validation Accuracies by Fold",
yaxis_title="Accuracy",
height=300,
)
st.plotly_chart(fig_acc, use_container_width=True)
with col2:
# Spectroscopy-specific metrics
if len(job.progress.spectroscopy_metrics) > 0:
# Extract metrics across folds
f1_scores = [
m.get("f1_score", 0) for m in job.progress.spectroscopy_metrics
]
cosine_sim = [
m.get("cosine_similarity", 0)
for m in job.progress.spectroscopy_metrics
]
dist_sim = [
m.get("distribution_similarity", 0)
for m in job.progress.spectroscopy_metrics
]
fig_spectro = go.Figure()
# Add traces for different metrics
fig_spectro.add_trace(
go.Scatter(
x=[f"Fold {i+1}" for i in range(len(f1_scores))],
y=f1_scores,
mode="lines+markers",
name="F1 Score",
line=dict(color="green"),
)
)
if any(c > 0 for c in cosine_sim):
fig_spectro.add_trace(
go.Scatter(
x=[f"Fold {i+1}" for i in range(len(cosine_sim))],
y=cosine_sim,
mode="lines+markers",
name="Cosine Similarity",
line={"color": "orange"},
)
)
fig_spectro.add_trace(
go.Scatter(
x=[f"Fold {i+1}" for i in range(len(dist_sim))],
y=dist_sim,
mode="lines+markers",
name="Distribution Similarity",
line=dict(color="purple"),
)
)
fig_spectro.update_layout(
title="Spectroscopy-Specific Metrics by Fold",
yaxis_title="Score",
height=300,
legend=dict(
orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1
),
)
st.plotly_chart(fig_spectro, use_container_width=True)
elif job.progress.fold_accuracies:
# Fallback to standard accuracy chart only
fig = go.Figure(
data=go.Bar(
x=[f"Fold {i+1}" for i in range(len(job.progress.fold_accuracies))],
y=job.progress.fold_accuracies,
name="Validation Accuracy",
)
)
fig.update_layout(
title="Cross-Validation Accuracies by Fold",
yaxis_title="Accuracy",
height=300,
)
st.plotly_chart(fig, use_container_width=True)
def render_training_history():
"""Render training history and results"""
st.markdown("### 📚 Training History")
training_manager = get_training_manager()
all_jobs = training_manager.list_jobs()
if not all_jobs:
st.info("No training history available. Start training some models!")
return
# Convert to DataFrame for display
history_data = []
for job in all_jobs:
row = {
"Job ID": job.job_id[:8],
"Model": job.config.model_name,
"Dataset": Path(job.config.dataset_path).name,
"Status": job.status.value,
"Created": job.created_at.strftime("%Y-%m-%d %H:%M"),
"Duration": "",
"Accuracy": "",
}
if job.completed_at and job.started_at:
duration = job.completed_at - job.started_at
row["Duration"] = str(duration).split(".")[0] # Remove microseconds
if job.status == TrainingStatus.COMPLETED and job.progress.fold_accuracies:
mean_acc = np.mean(job.progress.fold_accuracies)
std_acc = np.std(job.progress.fold_accuracies)
row["Accuracy"] = f"{mean_acc:.3f} ± {std_acc:.3f}"
history_data.append(row)
df = pd.DataFrame(history_data)
st.dataframe(df, use_container_width=True)
# Job details
if st.checkbox("Show detailed results"):
completed_jobs = [
job for job in all_jobs if job.status == TrainingStatus.COMPLETED
]
if completed_jobs:
selected_job_id = st.selectbox(
"Select job for details",
[job.job_id for job in completed_jobs],
format_func=lambda x: f"{x[:8]} - {next(job.config.model_name for job in completed_jobs if job.job_id == x)}",
)
selected_job = next(
job for job in completed_jobs if job.job_id == selected_job_id
)
render_training_results(selected_job)
def render_training_results(job: TrainingJob):
"""Render detailed training results for a completed job with enhanced metrics"""
st.markdown(f"#### Results for {job.config.model_name} - {job.job_id[:8]}")
if not job.progress.fold_accuracies:
st.warning("No results available for this job.")
return
# Summary metrics
mean_acc = np.mean(job.progress.fold_accuracies)
std_acc = np.std(job.progress.fold_accuracies)
# Enhanced metrics display
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Mean Accuracy", f"{mean_acc:.3f}")
with col2:
st.metric("Std Deviation", f"{std_acc:.3f}")
with col3:
st.metric("Best Fold", f"{max(job.progress.fold_accuracies):.3f}")
with col4:
st.metric("CV Strategy", job.config.cv_strategy.replace("_", " ").title())
# Spectroscopy-specific metrics summary
if job.progress.spectroscopy_metrics:
st.markdown("**Spectroscopy-Specific Metrics Summary**")
spectro_summary = {}
for metric_name in ["f1_score", "cosine_similarity", "distribution_similarity"]:
values = [
m.get(metric_name, 0)
for m in job.progress.spectroscopy_metrics
if m.get(metric_name, 0) > 0
]
if values:
spectro_summary[metric_name] = {
"mean": np.mean(values),
"std": np.std(values),
"best": max(values),
}
if spectro_summary:
cols = st.columns(len(spectro_summary))
for i, (metric, stats) in enumerate(spectro_summary.items()):
with cols[i]:
metric_display = metric.replace("_", " ").title()
st.metric(
f"{metric_display}",
f"{stats['mean']:.3f} ± {stats['std']:.3f}",
f"Best: {stats['best']:.3f}",
)
# Configuration summary
with st.expander("Training Configuration"):
config_display = {
"Model": job.config.model_name,
"Dataset": Path(job.config.dataset_path).name,
"Epochs": job.config.epochs,
"Batch Size": job.config.batch_size,
"Learning Rate": job.config.learning_rate,
"CV Folds": job.config.num_folds,
"CV Strategy": job.config.cv_strategy,
"Augmentation": "Enabled" if job.config.enable_augmentation else "Disabled",
"Noise Level": (
job.config.noise_level if job.config.enable_augmentation else "N/A"
),
"Spectral Weight": job.config.spectral_weight,
"Device": job.config.device,
}
config_df = pd.DataFrame(
list(config_display.items()), columns=["Parameter", "Value"]
)
st.dataframe(config_df, use_container_width=True)
# Enhanced visualizations
col1, col2 = st.columns(2)
with col1:
# Accuracy distribution
fig_acc = go.Figure(
data=go.Box(y=job.progress.fold_accuracies, name="Fold Accuracies")
)
fig_acc.update_layout(
title="Cross-Validation Accuracy Distribution", yaxis_title="Accuracy"
)
st.plotly_chart(fig_acc, use_container_width=True)
with col2:
# Metrics comparison if available
if (
job.progress.spectroscopy_metrics
and len(job.progress.spectroscopy_metrics) > 0
):
metrics_df = pd.DataFrame(job.progress.spectroscopy_metrics)
if not metrics_df.empty:
fig_metrics = go.Figure()
for col in metrics_df.columns:
if col in [
"accuracy",
"f1_score",
"cosine_similarity",
"distribution_similarity",
]:
fig_metrics.add_trace(
go.Scatter(
x=list(range(1, len(metrics_df) + 1)),
y=metrics_df[col],
mode="lines+markers",
name=col.replace("_", " ").title(),
)
)
fig_metrics.update_layout(
title="All Metrics Across Folds",
xaxis_title="Fold",
yaxis_title="Score",
height=300,
)
st.plotly_chart(fig_metrics, use_container_width=True)
# Download options
col1, col2, col3 = st.columns(3)
with col1:
if st.button("📥 Download Weights", key=f"weights_{job.job_id}"):
if job.weights_path and os.path.exists(job.weights_path):
with open(job.weights_path, "rb") as f:
st.download_button(
"Download Model Weights",
f.read(),
file_name=f"{job.config.model_name}_{job.job_id[:8]}.pth",
mime="application/octet-stream",
)
with col2:
if st.button("📄 Download Logs", key=f"logs_{job.job_id}"):
if job.logs_path and os.path.exists(job.logs_path):
with open(job.logs_path, "r") as f:
st.download_button(
"Download Training Logs",
f.read(),
file_name=f"training_log_{job.job_id[:8]}.json",
mime="application/json",
)
with col3:
if st.button("📊 Download Metrics CSV", key=f"metrics_{job.job_id}"):
# Create comprehensive metrics CSV
metrics_data = []
for i, (acc, spectro) in enumerate(
zip(
job.progress.fold_accuracies,
job.progress.spectroscopy_metrics or [],
)
):
row = {"fold": i + 1, "accuracy": acc}
if spectro:
row.update(spectro)
metrics_data.append(row)
metrics_df = pd.DataFrame(metrics_data)
csv = metrics_df.to_csv(index=False)
st.download_button(
"Download Metrics CSV",
csv,
file_name=f"metrics_{job.job_id[:8]}.csv",
mime="text/csv",
)
# Interpretability section
if st.checkbox("🔍 Show Model Interpretability", key=f"interpret_{job.job_id}"):
render_model_interpretability(job)
def render_model_interpretability(job: TrainingJob):
"""Render model interpretability features"""
st.markdown("##### 🔍 Model Interpretability")
try:
# Try to load the trained model for interpretation
if not job.weights_path or not os.path.exists(job.weights_path):
st.warning("Model weights not available for interpretation.")
return
# Simple feature importance visualization
st.markdown("**Feature Importance Analysis**")
# Generate mock feature importance for demonstration
# In a real implementation, this would use SHAP, Captum, or gradient-based methods
wavenumbers = np.linspace(400, 4000, job.config.target_len)
# Simulate feature importance (peaks at common polymer bands)
importance = np.zeros_like(wavenumbers)
# Simulate important regions for polymer degradation
# C-H stretch (2800-3000 cm⁻¹)
ch_region = (wavenumbers >= 2800) & (wavenumbers <= 3000)
importance[ch_region] = np.random.normal(0.8, 0.1, (np.sum(ch_region),))
# C=O stretch (1600-1800 cm⁻¹) - often changes with degradation
co_region = (wavenumbers >= 1600) & (wavenumbers <= 1800)
importance[co_region] = np.random.normal(0.9, 0.1, int(np.sum(co_region)))
# Fingerprint region (400-1500 cm⁻¹)
fingerprint_region = (wavenumbers >= 400) & (wavenumbers <= 1500)
importance[fingerprint_region] = np.random.normal(
0.3, 0.2, int(np.sum(fingerprint_region))
)
# Normalize importance
importance = np.abs(importance)
importance = (
importance / np.max(importance) if np.max(importance) > 0 else importance
)
# Create interpretability plot
fig_interpret = go.Figure()
# Add feature importance
fig_interpret.add_trace(
go.Scatter(
x=wavenumbers,
y=importance,
mode="lines",
name="Feature Importance",
fill="tonexty",
line=dict(color="red", width=2),
)
)
# Add annotations for important regions
fig_interpret.add_annotation(
x=2900,
y=0.8,
text="C-H Stretch<br>(Polymer backbone)",
showarrow=True,
arrowhead=2,
arrowcolor="blue",
bgcolor="lightblue",
bordercolor="blue",
)
fig_interpret.add_annotation(
x=1700,
y=0.9,
text="C=O Stretch<br>(Degradation marker)",
showarrow=True,
arrowhead=2,
arrowcolor="red",
bgcolor="lightcoral",
bordercolor="red",
)
fig_interpret.update_layout(
title="Model Feature Importance for Polymer Degradation Classification",
xaxis_title="Wavenumber (cm⁻¹)",
yaxis_title="Feature Importance",
height=400,
showlegend=False,
)
st.plotly_chart(fig_interpret, use_container_width=True)
# Interpretation insights
st.markdown("**Key Insights:**")
col1, col2 = st.columns(2)
with col1:
st.info(
"🔬 **High Importance Regions:**\n"
"- C=O stretch (1600-1800 cm⁻¹): Critical for degradation detection\n"
"- C-H stretch (2800-3000 cm⁻¹): Polymer backbone changes"
)
with col2:
st.info(
"📊 **Model Behavior:**\n"
"- Focuses on spectral regions known to change with polymer degradation\n"
"- Fingerprint region provides molecular specificity"
)
# Attention heatmap simulation
st.markdown("**Spectral Attention Heatmap**")
# Create a 2D heatmap showing attention across different samples
n_samples = 10
attention_matrix = np.random.beta(2, 5, (n_samples, len(wavenumbers)))
# Enhance attention in important regions
for i in range(n_samples):
attention_matrix[i, ch_region] *= np.random.uniform(2, 4)
attention_matrix[i, co_region] *= np.random.uniform(3, 5)
fig_heatmap = go.Figure(
data=go.Heatmap(
z=attention_matrix,
x=wavenumbers[::10], # Subsample for display
y=[f"Sample {i+1}" for i in range(n_samples)],
colorscale="Viridis",
colorbar=dict(title="Attention Score"),
)
)
fig_heatmap.update_layout(
title="Model Attention Across Different Samples",
xaxis_title="Wavenumber (cm⁻¹)",
yaxis_title="Sample",
height=300,
)
st.plotly_chart(fig_heatmap, use_container_width=True)
st.markdown(
"**Note:** *This interpretability analysis is simulated for demonstration. "
"In production, this would use actual gradient-based attribution methods "
"(SHAP, Integrated Gradients, etc.) on the trained model.*"
)
except Exception as e:
st.error(f"Error generating interpretability analysis: {e}")
st.info("Interpretability features require the trained model to be available.")
def start_training_job():
"""Start a new training job with current configuration"""
# Validate configuration
if "selected_dataset" not in st.session_state:
st.error("❌ Please select a dataset first.")
return
if not Path(st.session_state["selected_dataset"]).exists():
st.error("❌ Selected dataset path does not exist.")
return
# Create training configuration
config = TrainingConfig(
model_name=st.session_state.get("selected_model", "figure2"),
dataset_path=st.session_state["selected_dataset"],
target_len=st.session_state.get("train_target_len", 500),
batch_size=st.session_state.get("train_batch_size", 16),
epochs=st.session_state.get("train_epochs", 10),
learning_rate=st.session_state.get("train_learning_rate", 1e-3),
num_folds=st.session_state.get("train_num_folds", 10),
baseline_correction=st.session_state.get("train_baseline_correction", True),
smoothing=st.session_state.get("train_smoothing", True),
normalization=st.session_state.get("train_normalization", True),
modality=st.session_state.get("train_modality", "raman"),
device=st.session_state.get("train_device", "auto"),
cv_strategy=st.session_state.get("train_cv_strategy", "stratified_kfold"),
enable_augmentation=st.session_state.get("train_enable_augmentation", False),
noise_level=st.session_state.get("train_noise_level", 0.01),
spectral_weight=st.session_state.get("train_spectral_weight", 0.1),
)
# Submit job
training_manager = get_training_manager()
job_id = training_manager.submit_training_job(config)
st.success(f"✅ Training job started! Job ID: {job_id[:8]}")
st.info("Monitor progress in the Training Status section above.")
# Auto-refresh to show new job
time.sleep(1)
st.rerun()
def save_uploaded_dataset(
uploaded_files, dataset_name: str, file_labels: Dict[str, str]
):
"""Save uploaded dataset to local storage"""
try:
# Create dataset directory
dataset_dir = Path("datasets") / dataset_name
dataset_dir.mkdir(parents=True, exist_ok=True)
# Create label directories
(dataset_dir / "stable").mkdir(exist_ok=True)
(dataset_dir / "weathered").mkdir(exist_ok=True)
# Save files
saved_count = 0
for file in uploaded_files:
# Determine label
label = file_labels.get(file.name, "stable") # Default to stable
if "weathered" in file.name.lower() or "degraded" in file.name.lower():
label = "weathered"
# Save file
target_path = dataset_dir / label / file.name
with open(target_path, "wb") as f:
f.write(file.getbuffer())
saved_count += 1
st.success(
f"✅ Dataset '{dataset_name}' saved successfully! {saved_count} files processed."
)
st.session_state["selected_dataset"] = str(dataset_dir)
# Display saved dataset info
display_dataset_info(dataset_dir)
except Exception as e:
st.error(f"❌ Error saving dataset: {str(e)}")
# Auto-refresh for active training jobs
def setup_training_auto_refresh():
"""Set up auto-refresh for training progress"""
if "training_auto_refresh" not in st.session_state:
st.session_state.training_auto_refresh = True
training_manager = get_training_manager()
active_jobs = training_manager.list_jobs(TrainingStatus.RUNNING)
if active_jobs and st.session_state.training_auto_refresh:
# Auto-refresh every 5 seconds if there are active jobs
time.sleep(5)
st.rerun()