Spaces:
Running
Running
File size: 39,544 Bytes
9fe46f4 fe030dd 9fe46f4 7bc29cd 9fe46f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 |
"""
Training UI components for the ML Hub functionality.
Provides interface for model training, dataset management, and progress tracking.
"""
import os
import time
import torch
import streamlit as st
import pandas as pd
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from pathlib import Path
from typing import Dict, List, Optional
import json
from datetime import datetime, timedelta
from models.registry import choices as model_choices, get_model_info
from utils.training_manager import get_training_manager, TrainingJob
from utils.training_types import TrainingConfig, TrainingStatus
def render_training_tab():
"""Render the main training interface tab"""
st.markdown("## 🎯 Model Training Hub")
st.markdown(
"Train any model from the registry on your datasets with real-time progress tracking."
)
# Create columns for layout
config_col, status_col = st.columns([1, 1])
with config_col:
render_training_configuration()
with status_col:
render_training_status()
# Full-width progress and results section
st.markdown("---")
render_training_progress()
st.markdown("---")
render_training_history()
def render_training_configuration():
"""Render training configuration panel"""
st.markdown("### ⚙️ Training Configuration")
with st.expander("Model Selection", expanded=True):
# Model selection
available_models = model_choices()
selected_model = st.selectbox(
"Select Model Architecture",
available_models,
help="Choose from available model architectures in the registry",
)
# Store in session state
st.session_state["selected_model"] = selected_model
# Display model info
if selected_model:
try:
model_info = get_model_info(selected_model)
st.info(
f"**{selected_model}**: {model_info.get('description', 'No description available')}"
)
# Model specs
col1, col2 = st.columns(2)
with col1:
st.metric("Parameters", model_info.get("parameters", "Unknown"))
st.metric("Speed", model_info.get("speed", "Unknown"))
with col2:
if "performance" in model_info:
perf = model_info["performance"]
st.metric("Accuracy", f"{perf.get('accuracy', 0):.3f}")
st.metric("F1 Score", f"{perf.get('f1_score', 0):.3f}")
except KeyError:
st.warning(f"Model info not available for {selected_model}")
with st.expander("Dataset Selection", expanded=True):
render_dataset_selection()
with st.expander("Training Parameters", expanded=True):
render_training_parameters()
# Training action button
st.markdown("---")
if st.button("🚀 Start Training", type="primary", use_container_width=True):
start_training_job()
def render_dataset_selection():
"""Render dataset selection and upload interface"""
st.markdown("#### Dataset Management")
# Dataset source selection
dataset_source = st.radio(
"Dataset Source",
["Upload New Dataset", "Use Existing Dataset"],
horizontal=True,
)
if dataset_source == "Upload New Dataset":
render_dataset_upload()
else:
render_existing_dataset_selection()
def render_dataset_upload():
"""Render dataset upload interface"""
with st.expander("ℹ️ How to Prepare Your Dataset for Training"):
st.markdown(
"""
For the model to train correctly, your dataset needs to be structured properly.
**1. File Naming & Labeling:**
The system can infer the class (`stable` or `weathered`) from the filename. For example, a file named `stable_polymer_1.txt` or `weathered_sample.csv` will be automatically categorized.
Alternatively, you can upload all your files regardless of name and use the labeling tool that appears below to manually assign each file to a class.
**2. File Format:**
- Each file should contain a single spectrum.
- The format should be two columns: **Wavenumber** and **Intensity**.
- Supported file types: `.txt`, `.csv`, `.json`.
**3. Finding Data:**
If you need data, here are some great public resources to get started:
- **Open Specy**: A large, community-driven library for Raman and FTIR spectra.
- **RRUFF™ Project**: An integrated database of Raman spectra, X-ray diffraction, and chemistry data for minerals.
- **NIST Chemistry WebBook**: Contains FTIR spectra for many chemical compounds.
- **GitHub & Kaggle**: Search for "polymer spectroscopy dataset", "Raman spectra plastic", or "FTIR microplastics".
When using public data, you may need to manually classify and organize the files into the `stable`/`weathered` structure based on the sample descriptions provided with the dataset.
"""
)
st.markdown("##### Upload Dataset")
uploaded_files = st.file_uploader(
"Upload spectrum files (.txt, .csv, .json)",
accept_multiple_files=True,
type=["txt", "csv", "json"],
help="Upload multiple spectrum files. Organize them in folders named 'stable' and 'weathered' or label them accordingly.",
)
if uploaded_files:
st.success(f"✅ {len(uploaded_files)} files uploaded")
# Dataset organization
st.markdown("##### Dataset Organization")
dataset_name = st.text_input(
"Dataset Name",
placeholder="e.g., my_polymer_dataset",
help="Name for your dataset (will create a folder)",
)
# File labeling
st.markdown("**Label your files:**")
file_labels = {}
for i, file in enumerate(uploaded_files[:10]): # Limit display for performance
col1, col2 = st.columns([2, 1])
with col1:
st.text(file.name)
with col2:
file_labels[file.name] = st.selectbox(
f"Label for {file.name}", ["stable", "weathered"], key=f"label_{i}"
)
if len(uploaded_files) > 10:
st.info(
f"Showing first 10 files. {len(uploaded_files) - 10} more files will use default labeling based on filename."
)
if st.button("💾 Save Dataset") and dataset_name:
save_uploaded_dataset(uploaded_files, dataset_name, file_labels)
def render_existing_dataset_selection():
"""Render existing dataset selection"""
st.markdown("##### Available Datasets")
# Scan for existing datasets
datasets_dir = Path("datasets")
if datasets_dir.exists():
available_datasets = [d.name for d in datasets_dir.iterdir() if d.is_dir()]
if available_datasets:
selected_dataset = st.selectbox(
"Select Dataset",
available_datasets,
help="Choose from previously uploaded or existing datasets",
)
if selected_dataset:
st.session_state["selected_dataset"] = str(
datasets_dir / selected_dataset
)
display_dataset_info(datasets_dir / selected_dataset)
else:
st.warning("No datasets found. Please upload a dataset first.")
else:
st.warning("Datasets directory not found. Please upload a dataset first.")
def display_dataset_info(dataset_path: Path):
"""Display information about selected dataset"""
if not dataset_path.exists():
return
# Count files by category
file_counts = {}
total_files = 0
for category_dir in dataset_path.iterdir():
if category_dir.is_dir():
count = (
len(list(category_dir.glob("*.txt")))
+ len(list(category_dir.glob("*.csv")))
+ len(list(category_dir.glob("*.json")))
)
file_counts[category_dir.name] = count
total_files += count
if file_counts:
st.info(f"**Dataset**: {dataset_path.name}")
col1, col2 = st.columns(2)
with col1:
st.metric("Total Files", total_files)
with col2:
st.metric("Categories", len(file_counts))
# Display breakdown
for category, count in file_counts.items():
st.text(f"• {category}: {count} files")
def render_training_parameters():
"""Render training parameter configuration with enhanced options"""
st.markdown("#### Training Parameters")
col1, col2 = st.columns(2)
with col1:
epochs = st.number_input("Epochs", min_value=1, max_value=100, value=10)
batch_size = st.selectbox("Batch Size", [8, 16, 32, 64], index=1)
learning_rate = st.select_slider(
"Learning Rate",
options=[1e-4, 5e-4, 1e-3, 5e-3, 1e-2],
value=1e-3,
format_func=lambda x: f"{x:.0e}",
)
with col2:
num_folds = st.number_input(
"Cross-Validation Folds", min_value=3, max_value=10, value=10
)
target_len = st.number_input(
"Target Length", min_value=100, max_value=1000, value=500
)
modality = st.selectbox("Modality", ["raman", "ftir"], index=0)
# Advanced Cross-Validation Options
st.markdown("**Cross-Validation Strategy**")
cv_strategy = st.selectbox(
"CV Strategy",
["stratified_kfold", "kfold", "time_series_split"],
index=0,
help="Choose CV strategy: Stratified K-Fold (recommended for balanced datasets), K-Fold (for any dataset), Time Series Split (for temporal data)",
)
# Data Augmentation Options
st.markdown("**Data Augmentation**")
col1, col2 = st.columns(2)
with col1:
enable_augmentation = st.checkbox(
"Enable Spectral Augmentation",
value=False,
help="Add realistic noise and variations to improve model robustness",
)
with col2:
noise_level = st.slider(
"Noise Level",
min_value=0.001,
max_value=0.05,
value=0.01,
step=0.001,
disabled=not enable_augmentation,
help="Amount of Gaussian noise to add for augmentation",
)
# Spectroscopy-Specific Options
st.markdown("**Spectroscopy-Specific Settings**")
spectral_weight = st.slider(
"Spectral Metrics Weight",
min_value=0.0,
max_value=1.0,
value=0.1,
step=0.05,
help="Weight for spectroscopy-specific metrics (cosine similarity, peak matching)",
)
# Preprocessing options
st.markdown("**Preprocessing Options**")
col1, col2, col3 = st.columns(3)
with col1:
baseline_correction = st.checkbox("Baseline Correction", value=True)
with col2:
smoothing = st.checkbox("Smoothing", value=True)
with col3:
normalization = st.checkbox("Normalization", value=True)
# Device selection
device_options = ["auto", "cpu"]
if torch.cuda.is_available():
device_options.append("cuda")
device = st.selectbox("Device", device_options, index=0)
# Store parameters in session state
st.session_state.update(
{
"train_epochs": epochs,
"train_batch_size": batch_size,
"train_learning_rate": learning_rate,
"train_num_folds": num_folds,
"train_target_len": target_len,
"train_modality": modality,
"train_cv_strategy": cv_strategy,
"train_enable_augmentation": enable_augmentation,
"train_noise_level": noise_level,
"train_spectral_weight": spectral_weight,
"train_baseline_correction": baseline_correction,
"train_smoothing": smoothing,
"train_normalization": normalization,
"train_device": device,
}
)
def render_training_status():
"""Render training status and active jobs"""
st.markdown("### 📊 Training Status")
training_manager = get_training_manager()
# Active jobs
active_jobs = training_manager.list_jobs(TrainingStatus.RUNNING)
pending_jobs = training_manager.list_jobs(TrainingStatus.PENDING)
if active_jobs or pending_jobs:
st.markdown("#### Active Jobs")
for job in active_jobs + pending_jobs:
render_job_status_card(job)
# Recent completed jobs
completed_jobs = training_manager.list_jobs(TrainingStatus.COMPLETED)[
:3
] # Show last 3
if completed_jobs:
st.markdown("#### Recent Completed")
for job in completed_jobs:
render_job_status_card(job, compact=True)
def render_job_status_card(job: TrainingJob, compact: bool = False):
"""Render a status card for a training job"""
status_color = {
TrainingStatus.PENDING: "🟡",
TrainingStatus.RUNNING: "🔵",
TrainingStatus.COMPLETED: "🟢",
TrainingStatus.FAILED: "🔴",
TrainingStatus.CANCELLED: "⚫",
}
with st.expander(
f"{status_color[job.status]} {job.config.model_name} - {job.job_id[:8]}",
expanded=not compact,
):
if not compact:
col1, col2 = st.columns(2)
with col1:
st.text(f"Model: {job.config.model_name}")
st.text(f"Dataset: {Path(job.config.dataset_path).name}")
st.text(f"Status: {job.status.value}")
with col2:
st.text(f"Created: {job.created_at.strftime('%H:%M:%S')}")
if job.status == TrainingStatus.RUNNING:
st.text(
f"Fold: {job.progress.current_fold}/{job.progress.total_folds}"
)
st.text(
f"Epoch: {job.progress.current_epoch}/{job.progress.total_epochs}"
)
if job.status == TrainingStatus.RUNNING:
# Progress bars
fold_progress = job.progress.current_fold / job.progress.total_folds
epoch_progress = job.progress.current_epoch / job.progress.total_epochs
st.progress(fold_progress)
st.caption(
f"Overall: {fold_progress:.1%} | Current Loss: {job.progress.current_loss:.4f}"
)
elif job.status == TrainingStatus.COMPLETED and job.progress.fold_accuracies:
mean_acc = np.mean(job.progress.fold_accuracies)
std_acc = np.std(job.progress.fold_accuracies)
st.success(f"✅ Accuracy: {mean_acc:.3f} ± {std_acc:.3f}")
elif job.status == TrainingStatus.FAILED:
st.error(f"❌ Error: {job.error_message}")
def render_training_progress():
"""Render detailed training progress visualization"""
st.markdown("### 📈 Training Progress")
training_manager = get_training_manager()
active_jobs = training_manager.list_jobs(TrainingStatus.RUNNING)
if not active_jobs:
st.info("No active training jobs. Start a training job to see progress here.")
return
# Job selector for multiple active jobs
if len(active_jobs) > 1:
selected_job_id = st.selectbox(
"Select Job to Monitor",
[job.job_id for job in active_jobs],
format_func=lambda x: f"{x[:8]} - {next(job.config.model_name for job in active_jobs if job.job_id == x)}",
)
selected_job = next(job for job in active_jobs if job.job_id == selected_job_id)
else:
selected_job = active_jobs[0]
# Real-time progress visualization
render_job_progress_details(selected_job)
def render_job_progress_details(job: TrainingJob):
"""Render detailed progress for a specific job with enhanced metrics"""
col1, col2 = st.columns(2)
with col1:
st.metric(
"Current Fold", f"{job.progress.current_fold}/{job.progress.total_folds}"
)
st.metric(
"Current Epoch", f"{job.progress.current_epoch}/{job.progress.total_epochs}"
)
with col2:
st.metric("Current Loss", f"{job.progress.current_loss:.4f}")
st.metric("Current Accuracy", f"{job.progress.current_accuracy:.3f}")
# Progress bars
fold_progress = (
job.progress.current_fold / job.progress.total_folds
if job.progress.total_folds > 0
else 0
)
epoch_progress = (
job.progress.current_epoch / job.progress.total_epochs
if job.progress.total_epochs > 0
else 0
)
st.progress(fold_progress)
st.caption(f"Overall Progress: {fold_progress:.1%}")
st.progress(epoch_progress)
st.caption(f"Current Fold Progress: {epoch_progress:.1%}")
# Enhanced metrics visualization
if job.progress.fold_accuracies and job.progress.spectroscopy_metrics:
col1, col2 = st.columns(2)
with col1:
# Standard accuracy chart
fig_acc = go.Figure(
data=go.Bar(
x=[f"Fold {i+1}" for i in range(len(job.progress.fold_accuracies))],
y=job.progress.fold_accuracies,
name="Validation Accuracy",
marker_color="lightblue",
)
)
fig_acc.update_layout(
title="Cross-Validation Accuracies by Fold",
yaxis_title="Accuracy",
height=300,
)
st.plotly_chart(fig_acc, use_container_width=True)
with col2:
# Spectroscopy-specific metrics
if len(job.progress.spectroscopy_metrics) > 0:
# Extract metrics across folds
f1_scores = [
m.get("f1_score", 0) for m in job.progress.spectroscopy_metrics
]
cosine_sim = [
m.get("cosine_similarity", 0)
for m in job.progress.spectroscopy_metrics
]
dist_sim = [
m.get("distribution_similarity", 0)
for m in job.progress.spectroscopy_metrics
]
fig_spectro = go.Figure()
# Add traces for different metrics
fig_spectro.add_trace(
go.Scatter(
x=[f"Fold {i+1}" for i in range(len(f1_scores))],
y=f1_scores,
mode="lines+markers",
name="F1 Score",
line=dict(color="green"),
)
)
if any(c > 0 for c in cosine_sim):
fig_spectro.add_trace(
go.Scatter(
x=[f"Fold {i+1}" for i in range(len(cosine_sim))],
y=cosine_sim,
mode="lines+markers",
name="Cosine Similarity",
line={"color": "orange"},
)
)
fig_spectro.add_trace(
go.Scatter(
x=[f"Fold {i+1}" for i in range(len(dist_sim))],
y=dist_sim,
mode="lines+markers",
name="Distribution Similarity",
line=dict(color="purple"),
)
)
fig_spectro.update_layout(
title="Spectroscopy-Specific Metrics by Fold",
yaxis_title="Score",
height=300,
legend=dict(
orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1
),
)
st.plotly_chart(fig_spectro, use_container_width=True)
elif job.progress.fold_accuracies:
# Fallback to standard accuracy chart only
fig = go.Figure(
data=go.Bar(
x=[f"Fold {i+1}" for i in range(len(job.progress.fold_accuracies))],
y=job.progress.fold_accuracies,
name="Validation Accuracy",
)
)
fig.update_layout(
title="Cross-Validation Accuracies by Fold",
yaxis_title="Accuracy",
height=300,
)
st.plotly_chart(fig, use_container_width=True)
def render_training_history():
"""Render training history and results"""
st.markdown("### 📚 Training History")
training_manager = get_training_manager()
all_jobs = training_manager.list_jobs()
if not all_jobs:
st.info("No training history available. Start training some models!")
return
# Convert to DataFrame for display
history_data = []
for job in all_jobs:
row = {
"Job ID": job.job_id[:8],
"Model": job.config.model_name,
"Dataset": Path(job.config.dataset_path).name,
"Status": job.status.value,
"Created": job.created_at.strftime("%Y-%m-%d %H:%M"),
"Duration": "",
"Accuracy": "",
}
if job.completed_at and job.started_at:
duration = job.completed_at - job.started_at
row["Duration"] = str(duration).split(".")[0] # Remove microseconds
if job.status == TrainingStatus.COMPLETED and job.progress.fold_accuracies:
mean_acc = np.mean(job.progress.fold_accuracies)
std_acc = np.std(job.progress.fold_accuracies)
row["Accuracy"] = f"{mean_acc:.3f} ± {std_acc:.3f}"
history_data.append(row)
df = pd.DataFrame(history_data)
st.dataframe(df, use_container_width=True)
# Job details
if st.checkbox("Show detailed results"):
completed_jobs = [
job for job in all_jobs if job.status == TrainingStatus.COMPLETED
]
if completed_jobs:
selected_job_id = st.selectbox(
"Select job for details",
[job.job_id for job in completed_jobs],
format_func=lambda x: f"{x[:8]} - {next(job.config.model_name for job in completed_jobs if job.job_id == x)}",
)
selected_job = next(
job for job in completed_jobs if job.job_id == selected_job_id
)
render_training_results(selected_job)
def render_training_results(job: TrainingJob):
"""Render detailed training results for a completed job with enhanced metrics"""
st.markdown(f"#### Results for {job.config.model_name} - {job.job_id[:8]}")
if not job.progress.fold_accuracies:
st.warning("No results available for this job.")
return
# Summary metrics
mean_acc = np.mean(job.progress.fold_accuracies)
std_acc = np.std(job.progress.fold_accuracies)
# Enhanced metrics display
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Mean Accuracy", f"{mean_acc:.3f}")
with col2:
st.metric("Std Deviation", f"{std_acc:.3f}")
with col3:
st.metric("Best Fold", f"{max(job.progress.fold_accuracies):.3f}")
with col4:
st.metric("CV Strategy", job.config.cv_strategy.replace("_", " ").title())
# Spectroscopy-specific metrics summary
if job.progress.spectroscopy_metrics:
st.markdown("**Spectroscopy-Specific Metrics Summary**")
spectro_summary = {}
for metric_name in ["f1_score", "cosine_similarity", "distribution_similarity"]:
values = [
m.get(metric_name, 0)
for m in job.progress.spectroscopy_metrics
if m.get(metric_name, 0) > 0
]
if values:
spectro_summary[metric_name] = {
"mean": np.mean(values),
"std": np.std(values),
"best": max(values),
}
if spectro_summary:
cols = st.columns(len(spectro_summary))
for i, (metric, stats) in enumerate(spectro_summary.items()):
with cols[i]:
metric_display = metric.replace("_", " ").title()
st.metric(
f"{metric_display}",
f"{stats['mean']:.3f} ± {stats['std']:.3f}",
f"Best: {stats['best']:.3f}",
)
# Configuration summary
with st.expander("Training Configuration"):
config_display = {
"Model": job.config.model_name,
"Dataset": Path(job.config.dataset_path).name,
"Epochs": job.config.epochs,
"Batch Size": job.config.batch_size,
"Learning Rate": job.config.learning_rate,
"CV Folds": job.config.num_folds,
"CV Strategy": job.config.cv_strategy,
"Augmentation": "Enabled" if job.config.enable_augmentation else "Disabled",
"Noise Level": (
job.config.noise_level if job.config.enable_augmentation else "N/A"
),
"Spectral Weight": job.config.spectral_weight,
"Device": job.config.device,
}
config_df = pd.DataFrame(
list(config_display.items()), columns=["Parameter", "Value"]
)
st.dataframe(config_df, use_container_width=True)
# Enhanced visualizations
col1, col2 = st.columns(2)
with col1:
# Accuracy distribution
fig_acc = go.Figure(
data=go.Box(y=job.progress.fold_accuracies, name="Fold Accuracies")
)
fig_acc.update_layout(
title="Cross-Validation Accuracy Distribution", yaxis_title="Accuracy"
)
st.plotly_chart(fig_acc, use_container_width=True)
with col2:
# Metrics comparison if available
if (
job.progress.spectroscopy_metrics
and len(job.progress.spectroscopy_metrics) > 0
):
metrics_df = pd.DataFrame(job.progress.spectroscopy_metrics)
if not metrics_df.empty:
fig_metrics = go.Figure()
for col in metrics_df.columns:
if col in [
"accuracy",
"f1_score",
"cosine_similarity",
"distribution_similarity",
]:
fig_metrics.add_trace(
go.Scatter(
x=list(range(1, len(metrics_df) + 1)),
y=metrics_df[col],
mode="lines+markers",
name=col.replace("_", " ").title(),
)
)
fig_metrics.update_layout(
title="All Metrics Across Folds",
xaxis_title="Fold",
yaxis_title="Score",
height=300,
)
st.plotly_chart(fig_metrics, use_container_width=True)
# Download options
col1, col2, col3 = st.columns(3)
with col1:
if st.button("📥 Download Weights", key=f"weights_{job.job_id}"):
if job.weights_path and os.path.exists(job.weights_path):
with open(job.weights_path, "rb") as f:
st.download_button(
"Download Model Weights",
f.read(),
file_name=f"{job.config.model_name}_{job.job_id[:8]}.pth",
mime="application/octet-stream",
)
with col2:
if st.button("📄 Download Logs", key=f"logs_{job.job_id}"):
if job.logs_path and os.path.exists(job.logs_path):
with open(job.logs_path, "r") as f:
st.download_button(
"Download Training Logs",
f.read(),
file_name=f"training_log_{job.job_id[:8]}.json",
mime="application/json",
)
with col3:
if st.button("📊 Download Metrics CSV", key=f"metrics_{job.job_id}"):
# Create comprehensive metrics CSV
metrics_data = []
for i, (acc, spectro) in enumerate(
zip(
job.progress.fold_accuracies,
job.progress.spectroscopy_metrics or [],
)
):
row = {"fold": i + 1, "accuracy": acc}
if spectro:
row.update(spectro)
metrics_data.append(row)
metrics_df = pd.DataFrame(metrics_data)
csv = metrics_df.to_csv(index=False)
st.download_button(
"Download Metrics CSV",
csv,
file_name=f"metrics_{job.job_id[:8]}.csv",
mime="text/csv",
)
# Interpretability section
if st.checkbox("🔍 Show Model Interpretability", key=f"interpret_{job.job_id}"):
render_model_interpretability(job)
def render_model_interpretability(job: TrainingJob):
"""Render model interpretability features"""
st.markdown("##### 🔍 Model Interpretability")
try:
# Try to load the trained model for interpretation
if not job.weights_path or not os.path.exists(job.weights_path):
st.warning("Model weights not available for interpretation.")
return
# Simple feature importance visualization
st.markdown("**Feature Importance Analysis**")
# Generate mock feature importance for demonstration
# In a real implementation, this would use SHAP, Captum, or gradient-based methods
wavenumbers = np.linspace(400, 4000, job.config.target_len)
# Simulate feature importance (peaks at common polymer bands)
importance = np.zeros_like(wavenumbers)
# Simulate important regions for polymer degradation
# C-H stretch (2800-3000 cm⁻¹)
ch_region = (wavenumbers >= 2800) & (wavenumbers <= 3000)
importance[ch_region] = np.random.normal(0.8, 0.1, (np.sum(ch_region),))
# C=O stretch (1600-1800 cm⁻¹) - often changes with degradation
co_region = (wavenumbers >= 1600) & (wavenumbers <= 1800)
importance[co_region] = np.random.normal(0.9, 0.1, int(np.sum(co_region)))
# Fingerprint region (400-1500 cm⁻¹)
fingerprint_region = (wavenumbers >= 400) & (wavenumbers <= 1500)
importance[fingerprint_region] = np.random.normal(
0.3, 0.2, int(np.sum(fingerprint_region))
)
# Normalize importance
importance = np.abs(importance)
importance = (
importance / np.max(importance) if np.max(importance) > 0 else importance
)
# Create interpretability plot
fig_interpret = go.Figure()
# Add feature importance
fig_interpret.add_trace(
go.Scatter(
x=wavenumbers,
y=importance,
mode="lines",
name="Feature Importance",
fill="tonexty",
line=dict(color="red", width=2),
)
)
# Add annotations for important regions
fig_interpret.add_annotation(
x=2900,
y=0.8,
text="C-H Stretch<br>(Polymer backbone)",
showarrow=True,
arrowhead=2,
arrowcolor="blue",
bgcolor="lightblue",
bordercolor="blue",
)
fig_interpret.add_annotation(
x=1700,
y=0.9,
text="C=O Stretch<br>(Degradation marker)",
showarrow=True,
arrowhead=2,
arrowcolor="red",
bgcolor="lightcoral",
bordercolor="red",
)
fig_interpret.update_layout(
title="Model Feature Importance for Polymer Degradation Classification",
xaxis_title="Wavenumber (cm⁻¹)",
yaxis_title="Feature Importance",
height=400,
showlegend=False,
)
st.plotly_chart(fig_interpret, use_container_width=True)
# Interpretation insights
st.markdown("**Key Insights:**")
col1, col2 = st.columns(2)
with col1:
st.info(
"🔬 **High Importance Regions:**\n"
"- C=O stretch (1600-1800 cm⁻¹): Critical for degradation detection\n"
"- C-H stretch (2800-3000 cm⁻¹): Polymer backbone changes"
)
with col2:
st.info(
"📊 **Model Behavior:**\n"
"- Focuses on spectral regions known to change with polymer degradation\n"
"- Fingerprint region provides molecular specificity"
)
# Attention heatmap simulation
st.markdown("**Spectral Attention Heatmap**")
# Create a 2D heatmap showing attention across different samples
n_samples = 10
attention_matrix = np.random.beta(2, 5, (n_samples, len(wavenumbers)))
# Enhance attention in important regions
for i in range(n_samples):
attention_matrix[i, ch_region] *= np.random.uniform(2, 4)
attention_matrix[i, co_region] *= np.random.uniform(3, 5)
fig_heatmap = go.Figure(
data=go.Heatmap(
z=attention_matrix,
x=wavenumbers[::10], # Subsample for display
y=[f"Sample {i+1}" for i in range(n_samples)],
colorscale="Viridis",
colorbar=dict(title="Attention Score"),
)
)
fig_heatmap.update_layout(
title="Model Attention Across Different Samples",
xaxis_title="Wavenumber (cm⁻¹)",
yaxis_title="Sample",
height=300,
)
st.plotly_chart(fig_heatmap, use_container_width=True)
st.markdown(
"**Note:** *This interpretability analysis is simulated for demonstration. "
"In production, this would use actual gradient-based attribution methods "
"(SHAP, Integrated Gradients, etc.) on the trained model.*"
)
except Exception as e:
st.error(f"Error generating interpretability analysis: {e}")
st.info("Interpretability features require the trained model to be available.")
def start_training_job():
"""Start a new training job with current configuration"""
# Validate configuration
if "selected_dataset" not in st.session_state:
st.error("❌ Please select a dataset first.")
return
if not Path(st.session_state["selected_dataset"]).exists():
st.error("❌ Selected dataset path does not exist.")
return
# Create training configuration
config = TrainingConfig(
model_name=st.session_state.get("selected_model", "figure2"),
dataset_path=st.session_state["selected_dataset"],
target_len=st.session_state.get("train_target_len", 500),
batch_size=st.session_state.get("train_batch_size", 16),
epochs=st.session_state.get("train_epochs", 10),
learning_rate=st.session_state.get("train_learning_rate", 1e-3),
num_folds=st.session_state.get("train_num_folds", 10),
baseline_correction=st.session_state.get("train_baseline_correction", True),
smoothing=st.session_state.get("train_smoothing", True),
normalization=st.session_state.get("train_normalization", True),
modality=st.session_state.get("train_modality", "raman"),
device=st.session_state.get("train_device", "auto"),
cv_strategy=st.session_state.get("train_cv_strategy", "stratified_kfold"),
enable_augmentation=st.session_state.get("train_enable_augmentation", False),
noise_level=st.session_state.get("train_noise_level", 0.01),
spectral_weight=st.session_state.get("train_spectral_weight", 0.1),
)
# Submit job
training_manager = get_training_manager()
job_id = training_manager.submit_training_job(config)
st.success(f"✅ Training job started! Job ID: {job_id[:8]}")
st.info("Monitor progress in the Training Status section above.")
# Auto-refresh to show new job
time.sleep(1)
st.rerun()
def save_uploaded_dataset(
uploaded_files, dataset_name: str, file_labels: Dict[str, str]
):
"""Save uploaded dataset to local storage"""
try:
# Create dataset directory
dataset_dir = Path("datasets") / dataset_name
dataset_dir.mkdir(parents=True, exist_ok=True)
# Create label directories
(dataset_dir / "stable").mkdir(exist_ok=True)
(dataset_dir / "weathered").mkdir(exist_ok=True)
# Save files
saved_count = 0
for file in uploaded_files:
# Determine label
label = file_labels.get(file.name, "stable") # Default to stable
if "weathered" in file.name.lower() or "degraded" in file.name.lower():
label = "weathered"
# Save file
target_path = dataset_dir / label / file.name
with open(target_path, "wb") as f:
f.write(file.getbuffer())
saved_count += 1
st.success(
f"✅ Dataset '{dataset_name}' saved successfully! {saved_count} files processed."
)
st.session_state["selected_dataset"] = str(dataset_dir)
# Display saved dataset info
display_dataset_info(dataset_dir)
except Exception as e:
st.error(f"❌ Error saving dataset: {str(e)}")
# Auto-refresh for active training jobs
def setup_training_auto_refresh():
"""Set up auto-refresh for training progress"""
if "training_auto_refresh" not in st.session_state:
st.session_state.training_auto_refresh = True
training_manager = get_training_manager()
active_jobs = training_manager.list_jobs(TrainingStatus.RUNNING)
if active_jobs and st.session_state.training_auto_refresh:
# Auto-refresh every 5 seconds if there are active jobs
time.sleep(5)
st.rerun()
|