""" Training UI components for the ML Hub functionality. Provides interface for model training, dataset management, and progress tracking. """ import os import time import torch import streamlit as st import pandas as pd import numpy as np import plotly.graph_objects as go from plotly.subplots import make_subplots from pathlib import Path from typing import Dict, List, Optional import json from datetime import datetime, timedelta from models.registry import choices as model_choices, get_model_info from utils.training_manager import get_training_manager, TrainingJob from utils.training_types import TrainingConfig, TrainingStatus def render_training_tab(): """Render the main training interface tab""" st.markdown("## 🎯 Model Training Hub") st.markdown( "Train any model from the registry on your datasets with real-time progress tracking." ) # Create columns for layout config_col, status_col = st.columns([1, 1]) with config_col: render_training_configuration() with status_col: render_training_status() # Full-width progress and results section st.markdown("---") render_training_progress() st.markdown("---") render_training_history() def render_training_configuration(): """Render training configuration panel""" st.markdown("### ⚙️ Training Configuration") with st.expander("Model Selection", expanded=True): # Model selection available_models = model_choices() selected_model = st.selectbox( "Select Model Architecture", available_models, help="Choose from available model architectures in the registry", ) # Store in session state st.session_state["selected_model"] = selected_model # Display model info if selected_model: try: model_info = get_model_info(selected_model) st.info( f"**{selected_model}**: {model_info.get('description', 'No description available')}" ) # Model specs col1, col2 = st.columns(2) with col1: st.metric("Parameters", model_info.get("parameters", "Unknown")) st.metric("Speed", model_info.get("speed", "Unknown")) with col2: if "performance" in model_info: perf = model_info["performance"] st.metric("Accuracy", f"{perf.get('accuracy', 0):.3f}") st.metric("F1 Score", f"{perf.get('f1_score', 0):.3f}") except KeyError: st.warning(f"Model info not available for {selected_model}") with st.expander("Dataset Selection", expanded=True): render_dataset_selection() with st.expander("Training Parameters", expanded=True): render_training_parameters() # Training action button st.markdown("---") if st.button("🚀 Start Training", type="primary", use_container_width=True): start_training_job() def render_dataset_selection(): """Render dataset selection and upload interface""" st.markdown("#### Dataset Management") # Dataset source selection dataset_source = st.radio( "Dataset Source", ["Upload New Dataset", "Use Existing Dataset"], horizontal=True, ) if dataset_source == "Upload New Dataset": render_dataset_upload() else: render_existing_dataset_selection() def render_dataset_upload(): """Render dataset upload interface""" with st.expander("ℹ️ How to Prepare Your Dataset for Training"): st.markdown( """ For the model to train correctly, your dataset needs to be structured properly. **1. File Naming & Labeling:** The system can infer the class (`stable` or `weathered`) from the filename. For example, a file named `stable_polymer_1.txt` or `weathered_sample.csv` will be automatically categorized. Alternatively, you can upload all your files regardless of name and use the labeling tool that appears below to manually assign each file to a class. **2. File Format:** - Each file should contain a single spectrum. - The format should be two columns: **Wavenumber** and **Intensity**. - Supported file types: `.txt`, `.csv`, `.json`. **3. Finding Data:** If you need data, here are some great public resources to get started: - **Open Specy**: A large, community-driven library for Raman and FTIR spectra. - **RRUFF™ Project**: An integrated database of Raman spectra, X-ray diffraction, and chemistry data for minerals. - **NIST Chemistry WebBook**: Contains FTIR spectra for many chemical compounds. - **GitHub & Kaggle**: Search for "polymer spectroscopy dataset", "Raman spectra plastic", or "FTIR microplastics". When using public data, you may need to manually classify and organize the files into the `stable`/`weathered` structure based on the sample descriptions provided with the dataset. """ ) st.markdown("##### Upload Dataset") uploaded_files = st.file_uploader( "Upload spectrum files (.txt, .csv, .json)", accept_multiple_files=True, type=["txt", "csv", "json"], help="Upload multiple spectrum files. Organize them in folders named 'stable' and 'weathered' or label them accordingly.", ) if uploaded_files: st.success(f"✅ {len(uploaded_files)} files uploaded") # Dataset organization st.markdown("##### Dataset Organization") dataset_name = st.text_input( "Dataset Name", placeholder="e.g., my_polymer_dataset", help="Name for your dataset (will create a folder)", ) # File labeling st.markdown("**Label your files:**") file_labels = {} for i, file in enumerate(uploaded_files[:10]): # Limit display for performance col1, col2 = st.columns([2, 1]) with col1: st.text(file.name) with col2: file_labels[file.name] = st.selectbox( f"Label for {file.name}", ["stable", "weathered"], key=f"label_{i}" ) if len(uploaded_files) > 10: st.info( f"Showing first 10 files. {len(uploaded_files) - 10} more files will use default labeling based on filename." ) if st.button("💾 Save Dataset") and dataset_name: save_uploaded_dataset(uploaded_files, dataset_name, file_labels) def render_existing_dataset_selection(): """Render existing dataset selection""" st.markdown("##### Available Datasets") # Scan for existing datasets datasets_dir = Path("datasets") if datasets_dir.exists(): available_datasets = [d.name for d in datasets_dir.iterdir() if d.is_dir()] if available_datasets: selected_dataset = st.selectbox( "Select Dataset", available_datasets, help="Choose from previously uploaded or existing datasets", ) if selected_dataset: st.session_state["selected_dataset"] = str( datasets_dir / selected_dataset ) display_dataset_info(datasets_dir / selected_dataset) else: st.warning("No datasets found. Please upload a dataset first.") else: st.warning("Datasets directory not found. Please upload a dataset first.") def display_dataset_info(dataset_path: Path): """Display information about selected dataset""" if not dataset_path.exists(): return # Count files by category file_counts = {} total_files = 0 for category_dir in dataset_path.iterdir(): if category_dir.is_dir(): count = ( len(list(category_dir.glob("*.txt"))) + len(list(category_dir.glob("*.csv"))) + len(list(category_dir.glob("*.json"))) ) file_counts[category_dir.name] = count total_files += count if file_counts: st.info(f"**Dataset**: {dataset_path.name}") col1, col2 = st.columns(2) with col1: st.metric("Total Files", total_files) with col2: st.metric("Categories", len(file_counts)) # Display breakdown for category, count in file_counts.items(): st.text(f"• {category}: {count} files") def render_training_parameters(): """Render training parameter configuration with enhanced options""" st.markdown("#### Training Parameters") col1, col2 = st.columns(2) with col1: epochs = st.number_input("Epochs", min_value=1, max_value=100, value=10) batch_size = st.selectbox("Batch Size", [8, 16, 32, 64], index=1) learning_rate = st.select_slider( "Learning Rate", options=[1e-4, 5e-4, 1e-3, 5e-3, 1e-2], value=1e-3, format_func=lambda x: f"{x:.0e}", ) with col2: num_folds = st.number_input( "Cross-Validation Folds", min_value=3, max_value=10, value=10 ) target_len = st.number_input( "Target Length", min_value=100, max_value=1000, value=500 ) modality = st.selectbox("Modality", ["raman", "ftir"], index=0) # Advanced Cross-Validation Options st.markdown("**Cross-Validation Strategy**") cv_strategy = st.selectbox( "CV Strategy", ["stratified_kfold", "kfold", "time_series_split"], index=0, help="Choose CV strategy: Stratified K-Fold (recommended for balanced datasets), K-Fold (for any dataset), Time Series Split (for temporal data)", ) # Data Augmentation Options st.markdown("**Data Augmentation**") col1, col2 = st.columns(2) with col1: enable_augmentation = st.checkbox( "Enable Spectral Augmentation", value=False, help="Add realistic noise and variations to improve model robustness", ) with col2: noise_level = st.slider( "Noise Level", min_value=0.001, max_value=0.05, value=0.01, step=0.001, disabled=not enable_augmentation, help="Amount of Gaussian noise to add for augmentation", ) # Spectroscopy-Specific Options st.markdown("**Spectroscopy-Specific Settings**") spectral_weight = st.slider( "Spectral Metrics Weight", min_value=0.0, max_value=1.0, value=0.1, step=0.05, help="Weight for spectroscopy-specific metrics (cosine similarity, peak matching)", ) # Preprocessing options st.markdown("**Preprocessing Options**") col1, col2, col3 = st.columns(3) with col1: baseline_correction = st.checkbox("Baseline Correction", value=True) with col2: smoothing = st.checkbox("Smoothing", value=True) with col3: normalization = st.checkbox("Normalization", value=True) # Device selection device_options = ["auto", "cpu"] if torch.cuda.is_available(): device_options.append("cuda") device = st.selectbox("Device", device_options, index=0) # Store parameters in session state st.session_state.update( { "train_epochs": epochs, "train_batch_size": batch_size, "train_learning_rate": learning_rate, "train_num_folds": num_folds, "train_target_len": target_len, "train_modality": modality, "train_cv_strategy": cv_strategy, "train_enable_augmentation": enable_augmentation, "train_noise_level": noise_level, "train_spectral_weight": spectral_weight, "train_baseline_correction": baseline_correction, "train_smoothing": smoothing, "train_normalization": normalization, "train_device": device, } ) def render_training_status(): """Render training status and active jobs""" st.markdown("### 📊 Training Status") training_manager = get_training_manager() # Active jobs active_jobs = training_manager.list_jobs(TrainingStatus.RUNNING) pending_jobs = training_manager.list_jobs(TrainingStatus.PENDING) if active_jobs or pending_jobs: st.markdown("#### Active Jobs") for job in active_jobs + pending_jobs: render_job_status_card(job) # Recent completed jobs completed_jobs = training_manager.list_jobs(TrainingStatus.COMPLETED)[ :3 ] # Show last 3 if completed_jobs: st.markdown("#### Recent Completed") for job in completed_jobs: render_job_status_card(job, compact=True) def render_job_status_card(job: TrainingJob, compact: bool = False): """Render a status card for a training job""" status_color = { TrainingStatus.PENDING: "🟡", TrainingStatus.RUNNING: "🔵", TrainingStatus.COMPLETED: "🟢", TrainingStatus.FAILED: "🔴", TrainingStatus.CANCELLED: "⚫", } with st.expander( f"{status_color[job.status]} {job.config.model_name} - {job.job_id[:8]}", expanded=not compact, ): if not compact: col1, col2 = st.columns(2) with col1: st.text(f"Model: {job.config.model_name}") st.text(f"Dataset: {Path(job.config.dataset_path).name}") st.text(f"Status: {job.status.value}") with col2: st.text(f"Created: {job.created_at.strftime('%H:%M:%S')}") if job.status == TrainingStatus.RUNNING: st.text( f"Fold: {job.progress.current_fold}/{job.progress.total_folds}" ) st.text( f"Epoch: {job.progress.current_epoch}/{job.progress.total_epochs}" ) if job.status == TrainingStatus.RUNNING: # Progress bars fold_progress = job.progress.current_fold / job.progress.total_folds epoch_progress = job.progress.current_epoch / job.progress.total_epochs st.progress(fold_progress) st.caption( f"Overall: {fold_progress:.1%} | Current Loss: {job.progress.current_loss:.4f}" ) elif job.status == TrainingStatus.COMPLETED and job.progress.fold_accuracies: mean_acc = np.mean(job.progress.fold_accuracies) std_acc = np.std(job.progress.fold_accuracies) st.success(f"✅ Accuracy: {mean_acc:.3f} ± {std_acc:.3f}") elif job.status == TrainingStatus.FAILED: st.error(f"❌ Error: {job.error_message}") def render_training_progress(): """Render detailed training progress visualization""" st.markdown("### 📈 Training Progress") training_manager = get_training_manager() active_jobs = training_manager.list_jobs(TrainingStatus.RUNNING) if not active_jobs: st.info("No active training jobs. Start a training job to see progress here.") return # Job selector for multiple active jobs if len(active_jobs) > 1: selected_job_id = st.selectbox( "Select Job to Monitor", [job.job_id for job in active_jobs], format_func=lambda x: f"{x[:8]} - {next(job.config.model_name for job in active_jobs if job.job_id == x)}", ) selected_job = next(job for job in active_jobs if job.job_id == selected_job_id) else: selected_job = active_jobs[0] # Real-time progress visualization render_job_progress_details(selected_job) def render_job_progress_details(job: TrainingJob): """Render detailed progress for a specific job with enhanced metrics""" col1, col2 = st.columns(2) with col1: st.metric( "Current Fold", f"{job.progress.current_fold}/{job.progress.total_folds}" ) st.metric( "Current Epoch", f"{job.progress.current_epoch}/{job.progress.total_epochs}" ) with col2: st.metric("Current Loss", f"{job.progress.current_loss:.4f}") st.metric("Current Accuracy", f"{job.progress.current_accuracy:.3f}") # Progress bars fold_progress = ( job.progress.current_fold / job.progress.total_folds if job.progress.total_folds > 0 else 0 ) epoch_progress = ( job.progress.current_epoch / job.progress.total_epochs if job.progress.total_epochs > 0 else 0 ) st.progress(fold_progress) st.caption(f"Overall Progress: {fold_progress:.1%}") st.progress(epoch_progress) st.caption(f"Current Fold Progress: {epoch_progress:.1%}") # Enhanced metrics visualization if job.progress.fold_accuracies and job.progress.spectroscopy_metrics: col1, col2 = st.columns(2) with col1: # Standard accuracy chart fig_acc = go.Figure( data=go.Bar( x=[f"Fold {i+1}" for i in range(len(job.progress.fold_accuracies))], y=job.progress.fold_accuracies, name="Validation Accuracy", marker_color="lightblue", ) ) fig_acc.update_layout( title="Cross-Validation Accuracies by Fold", yaxis_title="Accuracy", height=300, ) st.plotly_chart(fig_acc, use_container_width=True) with col2: # Spectroscopy-specific metrics if len(job.progress.spectroscopy_metrics) > 0: # Extract metrics across folds f1_scores = [ m.get("f1_score", 0) for m in job.progress.spectroscopy_metrics ] cosine_sim = [ m.get("cosine_similarity", 0) for m in job.progress.spectroscopy_metrics ] dist_sim = [ m.get("distribution_similarity", 0) for m in job.progress.spectroscopy_metrics ] fig_spectro = go.Figure() # Add traces for different metrics fig_spectro.add_trace( go.Scatter( x=[f"Fold {i+1}" for i in range(len(f1_scores))], y=f1_scores, mode="lines+markers", name="F1 Score", line=dict(color="green"), ) ) if any(c > 0 for c in cosine_sim): fig_spectro.add_trace( go.Scatter( x=[f"Fold {i+1}" for i in range(len(cosine_sim))], y=cosine_sim, mode="lines+markers", name="Cosine Similarity", line={"color": "orange"}, ) ) fig_spectro.add_trace( go.Scatter( x=[f"Fold {i+1}" for i in range(len(dist_sim))], y=dist_sim, mode="lines+markers", name="Distribution Similarity", line=dict(color="purple"), ) ) fig_spectro.update_layout( title="Spectroscopy-Specific Metrics by Fold", yaxis_title="Score", height=300, legend=dict( orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1 ), ) st.plotly_chart(fig_spectro, use_container_width=True) elif job.progress.fold_accuracies: # Fallback to standard accuracy chart only fig = go.Figure( data=go.Bar( x=[f"Fold {i+1}" for i in range(len(job.progress.fold_accuracies))], y=job.progress.fold_accuracies, name="Validation Accuracy", ) ) fig.update_layout( title="Cross-Validation Accuracies by Fold", yaxis_title="Accuracy", height=300, ) st.plotly_chart(fig, use_container_width=True) def render_training_history(): """Render training history and results""" st.markdown("### 📚 Training History") training_manager = get_training_manager() all_jobs = training_manager.list_jobs() if not all_jobs: st.info("No training history available. Start training some models!") return # Convert to DataFrame for display history_data = [] for job in all_jobs: row = { "Job ID": job.job_id[:8], "Model": job.config.model_name, "Dataset": Path(job.config.dataset_path).name, "Status": job.status.value, "Created": job.created_at.strftime("%Y-%m-%d %H:%M"), "Duration": "", "Accuracy": "", } if job.completed_at and job.started_at: duration = job.completed_at - job.started_at row["Duration"] = str(duration).split(".")[0] # Remove microseconds if job.status == TrainingStatus.COMPLETED and job.progress.fold_accuracies: mean_acc = np.mean(job.progress.fold_accuracies) std_acc = np.std(job.progress.fold_accuracies) row["Accuracy"] = f"{mean_acc:.3f} ± {std_acc:.3f}" history_data.append(row) df = pd.DataFrame(history_data) st.dataframe(df, use_container_width=True) # Job details if st.checkbox("Show detailed results"): completed_jobs = [ job for job in all_jobs if job.status == TrainingStatus.COMPLETED ] if completed_jobs: selected_job_id = st.selectbox( "Select job for details", [job.job_id for job in completed_jobs], format_func=lambda x: f"{x[:8]} - {next(job.config.model_name for job in completed_jobs if job.job_id == x)}", ) selected_job = next( job for job in completed_jobs if job.job_id == selected_job_id ) render_training_results(selected_job) def render_training_results(job: TrainingJob): """Render detailed training results for a completed job with enhanced metrics""" st.markdown(f"#### Results for {job.config.model_name} - {job.job_id[:8]}") if not job.progress.fold_accuracies: st.warning("No results available for this job.") return # Summary metrics mean_acc = np.mean(job.progress.fold_accuracies) std_acc = np.std(job.progress.fold_accuracies) # Enhanced metrics display col1, col2, col3, col4 = st.columns(4) with col1: st.metric("Mean Accuracy", f"{mean_acc:.3f}") with col2: st.metric("Std Deviation", f"{std_acc:.3f}") with col3: st.metric("Best Fold", f"{max(job.progress.fold_accuracies):.3f}") with col4: st.metric("CV Strategy", job.config.cv_strategy.replace("_", " ").title()) # Spectroscopy-specific metrics summary if job.progress.spectroscopy_metrics: st.markdown("**Spectroscopy-Specific Metrics Summary**") spectro_summary = {} for metric_name in ["f1_score", "cosine_similarity", "distribution_similarity"]: values = [ m.get(metric_name, 0) for m in job.progress.spectroscopy_metrics if m.get(metric_name, 0) > 0 ] if values: spectro_summary[metric_name] = { "mean": np.mean(values), "std": np.std(values), "best": max(values), } if spectro_summary: cols = st.columns(len(spectro_summary)) for i, (metric, stats) in enumerate(spectro_summary.items()): with cols[i]: metric_display = metric.replace("_", " ").title() st.metric( f"{metric_display}", f"{stats['mean']:.3f} ± {stats['std']:.3f}", f"Best: {stats['best']:.3f}", ) # Configuration summary with st.expander("Training Configuration"): config_display = { "Model": job.config.model_name, "Dataset": Path(job.config.dataset_path).name, "Epochs": job.config.epochs, "Batch Size": job.config.batch_size, "Learning Rate": job.config.learning_rate, "CV Folds": job.config.num_folds, "CV Strategy": job.config.cv_strategy, "Augmentation": "Enabled" if job.config.enable_augmentation else "Disabled", "Noise Level": ( job.config.noise_level if job.config.enable_augmentation else "N/A" ), "Spectral Weight": job.config.spectral_weight, "Device": job.config.device, } config_df = pd.DataFrame( list(config_display.items()), columns=["Parameter", "Value"] ) st.dataframe(config_df, use_container_width=True) # Enhanced visualizations col1, col2 = st.columns(2) with col1: # Accuracy distribution fig_acc = go.Figure( data=go.Box(y=job.progress.fold_accuracies, name="Fold Accuracies") ) fig_acc.update_layout( title="Cross-Validation Accuracy Distribution", yaxis_title="Accuracy" ) st.plotly_chart(fig_acc, use_container_width=True) with col2: # Metrics comparison if available if ( job.progress.spectroscopy_metrics and len(job.progress.spectroscopy_metrics) > 0 ): metrics_df = pd.DataFrame(job.progress.spectroscopy_metrics) if not metrics_df.empty: fig_metrics = go.Figure() for col in metrics_df.columns: if col in [ "accuracy", "f1_score", "cosine_similarity", "distribution_similarity", ]: fig_metrics.add_trace( go.Scatter( x=list(range(1, len(metrics_df) + 1)), y=metrics_df[col], mode="lines+markers", name=col.replace("_", " ").title(), ) ) fig_metrics.update_layout( title="All Metrics Across Folds", xaxis_title="Fold", yaxis_title="Score", height=300, ) st.plotly_chart(fig_metrics, use_container_width=True) # Download options col1, col2, col3 = st.columns(3) with col1: if st.button("📥 Download Weights", key=f"weights_{job.job_id}"): if job.weights_path and os.path.exists(job.weights_path): with open(job.weights_path, "rb") as f: st.download_button( "Download Model Weights", f.read(), file_name=f"{job.config.model_name}_{job.job_id[:8]}.pth", mime="application/octet-stream", ) with col2: if st.button("📄 Download Logs", key=f"logs_{job.job_id}"): if job.logs_path and os.path.exists(job.logs_path): with open(job.logs_path, "r") as f: st.download_button( "Download Training Logs", f.read(), file_name=f"training_log_{job.job_id[:8]}.json", mime="application/json", ) with col3: if st.button("📊 Download Metrics CSV", key=f"metrics_{job.job_id}"): # Create comprehensive metrics CSV metrics_data = [] for i, (acc, spectro) in enumerate( zip( job.progress.fold_accuracies, job.progress.spectroscopy_metrics or [], ) ): row = {"fold": i + 1, "accuracy": acc} if spectro: row.update(spectro) metrics_data.append(row) metrics_df = pd.DataFrame(metrics_data) csv = metrics_df.to_csv(index=False) st.download_button( "Download Metrics CSV", csv, file_name=f"metrics_{job.job_id[:8]}.csv", mime="text/csv", ) # Interpretability section if st.checkbox("🔍 Show Model Interpretability", key=f"interpret_{job.job_id}"): render_model_interpretability(job) def render_model_interpretability(job: TrainingJob): """Render model interpretability features""" st.markdown("##### 🔍 Model Interpretability") try: # Try to load the trained model for interpretation if not job.weights_path or not os.path.exists(job.weights_path): st.warning("Model weights not available for interpretation.") return # Simple feature importance visualization st.markdown("**Feature Importance Analysis**") # Generate mock feature importance for demonstration # In a real implementation, this would use SHAP, Captum, or gradient-based methods wavenumbers = np.linspace(400, 4000, job.config.target_len) # Simulate feature importance (peaks at common polymer bands) importance = np.zeros_like(wavenumbers) # Simulate important regions for polymer degradation # C-H stretch (2800-3000 cm⁻¹) ch_region = (wavenumbers >= 2800) & (wavenumbers <= 3000) importance[ch_region] = np.random.normal(0.8, 0.1, (np.sum(ch_region),)) # C=O stretch (1600-1800 cm⁻¹) - often changes with degradation co_region = (wavenumbers >= 1600) & (wavenumbers <= 1800) importance[co_region] = np.random.normal(0.9, 0.1, int(np.sum(co_region))) # Fingerprint region (400-1500 cm⁻¹) fingerprint_region = (wavenumbers >= 400) & (wavenumbers <= 1500) importance[fingerprint_region] = np.random.normal( 0.3, 0.2, int(np.sum(fingerprint_region)) ) # Normalize importance importance = np.abs(importance) importance = ( importance / np.max(importance) if np.max(importance) > 0 else importance ) # Create interpretability plot fig_interpret = go.Figure() # Add feature importance fig_interpret.add_trace( go.Scatter( x=wavenumbers, y=importance, mode="lines", name="Feature Importance", fill="tonexty", line=dict(color="red", width=2), ) ) # Add annotations for important regions fig_interpret.add_annotation( x=2900, y=0.8, text="C-H Stretch
(Polymer backbone)", showarrow=True, arrowhead=2, arrowcolor="blue", bgcolor="lightblue", bordercolor="blue", ) fig_interpret.add_annotation( x=1700, y=0.9, text="C=O Stretch
(Degradation marker)", showarrow=True, arrowhead=2, arrowcolor="red", bgcolor="lightcoral", bordercolor="red", ) fig_interpret.update_layout( title="Model Feature Importance for Polymer Degradation Classification", xaxis_title="Wavenumber (cm⁻¹)", yaxis_title="Feature Importance", height=400, showlegend=False, ) st.plotly_chart(fig_interpret, use_container_width=True) # Interpretation insights st.markdown("**Key Insights:**") col1, col2 = st.columns(2) with col1: st.info( "🔬 **High Importance Regions:**\n" "- C=O stretch (1600-1800 cm⁻¹): Critical for degradation detection\n" "- C-H stretch (2800-3000 cm⁻¹): Polymer backbone changes" ) with col2: st.info( "📊 **Model Behavior:**\n" "- Focuses on spectral regions known to change with polymer degradation\n" "- Fingerprint region provides molecular specificity" ) # Attention heatmap simulation st.markdown("**Spectral Attention Heatmap**") # Create a 2D heatmap showing attention across different samples n_samples = 10 attention_matrix = np.random.beta(2, 5, (n_samples, len(wavenumbers))) # Enhance attention in important regions for i in range(n_samples): attention_matrix[i, ch_region] *= np.random.uniform(2, 4) attention_matrix[i, co_region] *= np.random.uniform(3, 5) fig_heatmap = go.Figure( data=go.Heatmap( z=attention_matrix, x=wavenumbers[::10], # Subsample for display y=[f"Sample {i+1}" for i in range(n_samples)], colorscale="Viridis", colorbar=dict(title="Attention Score"), ) ) fig_heatmap.update_layout( title="Model Attention Across Different Samples", xaxis_title="Wavenumber (cm⁻¹)", yaxis_title="Sample", height=300, ) st.plotly_chart(fig_heatmap, use_container_width=True) st.markdown( "**Note:** *This interpretability analysis is simulated for demonstration. " "In production, this would use actual gradient-based attribution methods " "(SHAP, Integrated Gradients, etc.) on the trained model.*" ) except Exception as e: st.error(f"Error generating interpretability analysis: {e}") st.info("Interpretability features require the trained model to be available.") def start_training_job(): """Start a new training job with current configuration""" # Validate configuration if "selected_dataset" not in st.session_state: st.error("❌ Please select a dataset first.") return if not Path(st.session_state["selected_dataset"]).exists(): st.error("❌ Selected dataset path does not exist.") return # Create training configuration config = TrainingConfig( model_name=st.session_state.get("selected_model", "figure2"), dataset_path=st.session_state["selected_dataset"], target_len=st.session_state.get("train_target_len", 500), batch_size=st.session_state.get("train_batch_size", 16), epochs=st.session_state.get("train_epochs", 10), learning_rate=st.session_state.get("train_learning_rate", 1e-3), num_folds=st.session_state.get("train_num_folds", 10), baseline_correction=st.session_state.get("train_baseline_correction", True), smoothing=st.session_state.get("train_smoothing", True), normalization=st.session_state.get("train_normalization", True), modality=st.session_state.get("train_modality", "raman"), device=st.session_state.get("train_device", "auto"), cv_strategy=st.session_state.get("train_cv_strategy", "stratified_kfold"), enable_augmentation=st.session_state.get("train_enable_augmentation", False), noise_level=st.session_state.get("train_noise_level", 0.01), spectral_weight=st.session_state.get("train_spectral_weight", 0.1), ) # Submit job training_manager = get_training_manager() job_id = training_manager.submit_training_job(config) st.success(f"✅ Training job started! Job ID: {job_id[:8]}") st.info("Monitor progress in the Training Status section above.") # Auto-refresh to show new job time.sleep(1) st.rerun() def save_uploaded_dataset( uploaded_files, dataset_name: str, file_labels: Dict[str, str] ): """Save uploaded dataset to local storage""" try: # Create dataset directory dataset_dir = Path("datasets") / dataset_name dataset_dir.mkdir(parents=True, exist_ok=True) # Create label directories (dataset_dir / "stable").mkdir(exist_ok=True) (dataset_dir / "weathered").mkdir(exist_ok=True) # Save files saved_count = 0 for file in uploaded_files: # Determine label label = file_labels.get(file.name, "stable") # Default to stable if "weathered" in file.name.lower() or "degraded" in file.name.lower(): label = "weathered" # Save file target_path = dataset_dir / label / file.name with open(target_path, "wb") as f: f.write(file.getbuffer()) saved_count += 1 st.success( f"✅ Dataset '{dataset_name}' saved successfully! {saved_count} files processed." ) st.session_state["selected_dataset"] = str(dataset_dir) # Display saved dataset info display_dataset_info(dataset_dir) except Exception as e: st.error(f"❌ Error saving dataset: {str(e)}") # Auto-refresh for active training jobs def setup_training_auto_refresh(): """Set up auto-refresh for training progress""" if "training_auto_refresh" not in st.session_state: st.session_state.training_auto_refresh = True training_manager = get_training_manager() active_jobs = training_manager.list_jobs(TrainingStatus.RUNNING) if active_jobs and st.session_state.training_auto_refresh: # Auto-refresh every 5 seconds if there are active jobs time.sleep(5) st.rerun()