File size: 17,038 Bytes
0a4f1a6
 
 
0fec4be
0a4f1a6
0fec4be
9d0759c
 
9e65713
0a4f1a6
 
 
 
fe030dd
0fec4be
342a6af
0fec4be
 
 
342a6af
0fec4be
9d0759c
0a4f1a6
 
9d0759c
0fec4be
0a4f1a6
 
9d0759c
0fec4be
0a4f1a6
 
 
 
 
 
 
 
fe030dd
0a4f1a6
 
 
 
 
9d0759c
0a4f1a6
 
 
 
 
 
 
 
fe030dd
0a4f1a6
 
 
 
 
 
 
 
 
 
 
 
fe030dd
0fec4be
0a4f1a6
 
 
 
 
 
 
 
0fec4be
fe030dd
0fec4be
0a4f1a6
 
 
 
0fec4be
0a4f1a6
 
 
 
 
0fec4be
0a4f1a6
 
 
 
 
0fec4be
0a4f1a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d0759c
 
 
0a4f1a6
 
 
 
 
 
 
 
fe030dd
0a4f1a6
fe030dd
0a4f1a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d0759c
 
0a4f1a6
9e65713
9d0759c
0fec4be
0a4f1a6
9d0759c
9e65713
 
0fec4be
0a4f1a6
 
 
fe030dd
9d0759c
0a4f1a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe030dd
0a4f1a6
 
 
 
 
 
 
0fec4be
9d0759c
0fec4be
 
fe030dd
0a4f1a6
 
 
 
 
342a6af
0a4f1a6
342a6af
0a4f1a6
342a6af
0a4f1a6
342a6af
 
0a4f1a6
 
 
342a6af
 
 
 
 
 
 
 
 
 
 
0a4f1a6
342a6af
 
 
 
 
 
 
0a4f1a6
fe030dd
0a4f1a6
342a6af
 
0a4f1a6
 
 
342a6af
0a4f1a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fec4be
 
 
 
 
9e65713
342a6af
 
0fec4be
 
 
9d0759c
0fec4be
 
 
 
 
 
9d0759c
0fec4be
 
 
 
 
 
342a6af
 
0fec4be
342a6af
 
 
0fec4be
 
342a6af
fe030dd
 
 
342a6af
fe030dd
0fec4be
 
342a6af
 
9d0759c
 
0fec4be
9e65713
 
 
0fec4be
342a6af
 
 
0fec4be
 
 
9d0759c
342a6af
 
 
 
0fec4be
9d0759c
0fec4be
342a6af
0fec4be
 
 
 
 
 
342a6af
0fec4be
 
 
 
 
 
 
 
 
 
 
 
 
 
fe030dd
0fec4be
 
 
 
 
9e65713
0fec4be
 
9d0759c
0fec4be
 
 
 
 
342a6af
9e65713
0fec4be
 
 
9d0759c
0fec4be
 
 
 
 
 
9d0759c
0fec4be
 
 
 
 
 
342a6af
 
 
0fec4be
 
 
 
 
 
9d0759c
0fec4be
9e65713
0fec4be
9d0759c
0fec4be
342a6af
 
 
 
 
 
 
0fec4be
 
 
 
 
9d0759c
0fec4be
 
 
 
 
 
 
 
 
 
 
 
9e65713
342a6af
 
 
 
 
9e65713
0fec4be
 
fe030dd
0fec4be
9e65713
 
 
 
 
 
 
0fec4be
 
 
 
9d0759c
9e65713
 
0fec4be
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
"""Multi-file processing utilities for batch inference.

Handles multiple file uploads and iterative processing.

Supports TXT, CSV, and JSON file formats with automatic detection."""

from typing import List, Dict, Any, Tuple, Optional, Union
import time
import streamlit as st
import numpy as np
import pandas as pd
import json
import csv
import io
from pathlib import Path
import hashlib

from .preprocessing import preprocess_spectrum
from .errors import ErrorHandler, safe_execute
from .results_manager import ResultsManager
from .confidence import calculate_softmax_confidence
from config import TARGET_LEN


def detect_file_format(filename: str, content: str) -> str:
    """Automatically detect file format based on exstention and content



    Args:

        filename: Name of the file

        content: Content of the file



    Returns:

        File format: .'txt', .'csv', .'json'

    """
    # First try by extension
    suffix = Path(filename).suffix.lower()
    if suffix == ".json":
        try:
            json.loads(content)
            return "json"
        except json.JSONDecodeError:
            pass
    elif suffix == ".csv":
        return "csv"
    elif suffix == ".txt":
        return "txt"

    # If extension doesn't match or is unclear, try content detection
    content_stripped = content.strip()

    # Try JSON
    if content_stripped.startswith(("{", "[")):
        try:
            json.loads(content)
            return "json"
        except json.JSONDecodeError:
            pass

    # Try CSV (look for commas in first few lines)
    lines = content_stripped.split("\n")[:5]
    comma_count = sum(line.count(",") for line in lines)
    if comma_count > len(lines):  # More commas than lines suggests CSV
        return "csv"

    # Default to TXT
    return "txt"


def parse_json_spectrum(content: str) -> Tuple[np.ndarray, np.ndarray]:
    """

    Parse spectrum data from JSON format.



    Expected formats:

    - {"wavenumbers": [...], "intensities": [...]}

    - {"x": [...], "y": [...]}

    - [{"wavenumber": val, "intensity": val}, ...]

    """

    try:
        data = json.loads(content)

        # Format 1: Object with arrays
        if isinstance(data, dict):
            x_key = None
            y_key = None

            # Try common key names for x-axis
            for key in ["wavenumbers", "wavenumber", "x", "freq", "frequency"]:
                if key in data:
                    x_key = key
                    break

            # Try common key names for y-axis
            for key in ["intensities", "intensity", "y", "counts", "absorbance"]:
                if key in data:
                    y_key = key
                    break

            if x_key and y_key:
                x_vals = np.array(data[x_key], dtype=float)
                y_vals = np.array(data[y_key], dtype=float)
                return x_vals, y_vals

        # Format 2: Array of objects
        elif isinstance(data, list) and len(data) > 0 and isinstance(data[0], dict):
            x_vals = []
            y_vals = []

            for item in data:
                # Try to find x and y values
                x_val = None
                y_val = None

                for x_key in ["wavenumber", "wavenumbers", "x", "freq"]:
                    if x_key in item:
                        x_val = float(item[x_key])
                        break

                for y_key in ["intensity", "intensities", "y", "counts"]:
                    if y_key in item:
                        y_val = float(item[y_key])
                        break

                if x_val is not None and y_val is not None:
                    x_vals.append(x_val)
                    y_vals.append(y_val)

            if x_vals and y_vals:
                return np.array(x_vals), np.array(y_vals)

        raise ValueError(
            "JSON format not recognized. Expected wavenumber/intensity pairs."
        )

    except json.JSONDecodeError as e:
        raise ValueError(f"Invalid JSON format: {str(e)}") from e
    except Exception as e:
        raise ValueError(f"Failed to parse JSON spectrum: {str(e)}") from e


def parse_csv_spectrum(

    content: str, filename: str = "unknown"

) -> Tuple[np.ndarray, np.ndarray]:
    """

    Parse spectrum data from CSV format.



    Handles various CSV formats with headers or without.

    """
    try:
        # Use StringIO to treat string as file-like object
        csv_file = io.StringIO(content)

        # Try to detect delimiter
        sample = content[:1024]
        delimiter = ","
        if sample.count(";") > sample.count(","):
            delimiter = ";"
        elif sample.count("\t") > sample.count(","):
            delimiter = "\t"

        # Read CSV
        csv_reader = csv.reader(csv_file, delimiter=delimiter)
        rows = list(csv_reader)

        if not rows:
            raise ValueError("Empty CSV file")

        # Check if first row is header
        has_header = False
        try:
            # If first row contains non-numeric data, it's likely a header
            float(rows[0][0])
            float(rows[0][1])
        except (ValueError, IndexError):
            has_header = True

        data_rows = rows[1:] if has_header else rows

        # Extract x and y values
        x_vals = []
        y_vals = []

        for i, row in enumerate(data_rows):
            if len(row) < 2:
                continue

            try:
                x_val = float(row[0])
                y_val = float(row[1])
                x_vals.append(x_val)
                y_vals.append(y_val)
            except ValueError:
                ErrorHandler.log_warning(
                    f"Could not parse CSV row {i+1}: {row}", f"Parsing {filename}"
                )
                continue

        if len(x_vals) < 10:
            raise ValueError(
                f"Insufficient data points ({len(x_vals)}). Need at least 10 points."
            )

        return np.array(x_vals), np.array(y_vals)

    except Exception as e:
        raise ValueError(f"Failed to parse CSV spectrum: {str(e)}") from e


def parse_spectrum_data(

    text_content: str, filename: str = "unknown", file_format: Optional[str] = None

) -> Tuple[np.ndarray, np.ndarray]:
    """

    Parse spectrum data from text content with automatic format detection.

    Args:

        text_content: Raw text content of the spectrum file

        filename: Name of the file for error reporting

        file_format: Force specific format ('txt', 'csv', 'json') or None for auto-detection

    Returns:

        Tuple of (x_values, y_values) as numpy arrays

    Raises:

        ValueError: If the data cannot be parsed

    """
    try:
        # Detect format if not specified
        if file_format is None:
            file_format = detect_file_format(filename, text_content)

        # Parse based on detected/specified format
        if file_format == "json":
            x, y = parse_json_spectrum(text_content)
        elif file_format == "csv":
            x, y = parse_csv_spectrum(text_content, filename)
        else:  # Default to TXT format
            x, y = parse_txt_spectrum(text_content, filename)

        # Common validation for all formats
        validate_spectrum_data(x, y, filename)

        return x, y

    except Exception as e:
        raise ValueError(f"Failed to parse spectrum data: {str(e)}") from e


def parse_txt_spectrum(

    content: str, filename: str = "unknown"

) -> Tuple[np.ndarray, np.ndarray]:
    """Robustly parse spectrum data from TXT format."""
    lines = content.strip().split("\n")
    x_vals, y_vals = [], []

    for i, line in enumerate(lines):
        line = line.strip()
        if not line or line.startswith(("#", "%")):
            continue

        try:
            # Handle different separators
            parts = line.replace(",", " ").replace(";", " ").replace("\t", " ").split()

            # Find the first two valid numbers in the line
            numbers = []
            for part in parts:
                if part:  # Skip empty strings from multiple spaces
                    try:
                        numbers.append(float(part))
                    except ValueError:
                        continue  # Ignore non-numeric parts

            if len(numbers) >= 2:
                x_vals.append(numbers[0])
                y_vals.append(numbers[1])
            else:
                ErrorHandler.log_warning(
                    f"Could not find two numbers on line {i+1}: '{line}'",
                    f"Parsing {filename}",
                )

        except ValueError as e:
            ErrorHandler.log_warning(
                f"Error parsing line {i+1}: '{line}'. Error: {e}",
                f"Parsing {filename}",
            )
            continue

    if len(x_vals) < 10:
        raise ValueError(
            f"Insufficient data points ({len(x_vals)}). Need at least 10 points."
        )

    return np.array(x_vals), np.array(y_vals)


def validate_spectrum_data(x: np.ndarray, y: np.ndarray, filename: str) -> None:
    """

    Validate parsed spectrum data for common issues.

    """
    # Check for NaNs
    if np.any(np.isnan(x)) or np.any(np.isnan(y)):
        raise ValueError("Input data contains NaN values")

    # Check monotonic increasing x (sort if needed)
    if not np.all(np.diff(x) >= 0):
        # Sort by x values if not monotonic
        sort_idx = np.argsort(x)
        x = x[sort_idx]
        y = y[sort_idx]
        ErrorHandler.log_warning(
            "Wavenumbers were not monotonic - data has been sorted",
            f"Parsing {filename}",
        )

    # Check reasonable range for spectroscopy
    if min(x) < 0 or max(x) > 10000 or (max(x) - min(x)) < 100:
        ErrorHandler.log_warning(
            f"Unusual wavenumber range: {min(x):.1f} - {max(x):.1f} cm⁻¹",
            f"Parsing {filename}",
        )


def process_single_file(

    filename: str,

    text_content: str,

    model_choice: str,

    run_inference_func,

    label_file_func,

    modality: str,

    target_len: int,

) -> Optional[Dict[str, Any]]:
    """

    Process a single spectrum file



    Args:

        filename: Name of the file

        text_content: Raw text content

        model_choice: Selected model name

        run_inference_func: Function to run inference

        label_file_func: Function to extract ground truth label



    Returns:

        Dictionary with processing results or None if failed

    """
    start_time = time.time()

    try:
        # 1. Parse spectrum data
        x_raw, y_raw = parse_spectrum_data(text_content, filename)

        # 2. Preprocess spectrum using the full, modality-aware pipeline
        x_resampled, y_resampled = preprocess_spectrum(
            x_raw, y_raw, modality=modality, target_len=target_len
        )

        # 3. Run inference, passing modality
        cache_key = hashlib.md5(
            f"{y_resampled.tobytes()}{model_choice}".encode()
        ).hexdigest()
        prediction, logits_list, probs, inference_time, logits = run_inference_func(
            y_resampled, model_choice, modality=modality, cache_key=cache_key
        )

        if prediction is None:
            raise ValueError("Inference returned None. Model may have failed to load.")

        # ==Calculate confidence==
        if logits is not None:
            probs_np, max_confidence, confidence_level, confidence_emoji = (
                calculate_softmax_confidence(logits)
            )
        else:
            # Fallback for older models or if logits are not returned
            probs_np = np.array(probs) if probs is not None else np.array([])
            max_confidence = float(np.max(probs_np)) if probs_np.size > 0 else 0.0
            confidence_level = "LOW"
            confidence_emoji = "🔴"

        # ==Get ground truth==
        ground_truth = label_file_func(filename)
        ground_truth = (
            ground_truth if ground_truth is not None and ground_truth >= 0 else None
        )

        # ==Get predicted class==
        label_map = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"}
        predicted_class = label_map.get(int(prediction), f"Unknown ({prediction})")

        processing_time = time.time() - start_time

        return {
            "filename": filename,
            "success": True,
            "prediction": int(prediction),
            "predicted_class": predicted_class,
            "confidence": max_confidence,
            "confidence_level": confidence_level,
            "confidence_emoji": confidence_emoji,
            "logits": logits_list if logits_list else [],
            "probabilities": probs_np.tolist() if len(probs_np) > 0 else [],
            "ground_truth": ground_truth,
            "processing_time": processing_time,
            "x_raw": x_raw,
            "y_raw": y_raw,
            "x_resampled": x_resampled,
            "y_resampled": y_resampled,
        }

    except ValueError as e:
        ErrorHandler.log_error(e, f"processing {filename}")
        return {
            "filename": filename,
            "success": False,
            "error": str(e),
            "processing_time": time.time() - start_time,
        }


def process_multiple_files(

    uploaded_files: List,

    model_choice: str,

    run_inference_func,

    label_file_func,

    modality: str,

    progress_callback=None,

) -> List[Dict[str, Any]]:
    """

    Process multiple uploaded files



    Args:

        uploaded_files: List of uploaded file objects

        model_choice: Selected model name

        run_inference_func: Function to run inference

        label_file_func: Function to extract ground truth label

        progress_callback: Optional callback to update progress



    Returns:

        List of processing results

    """
    results = []
    total_files = len(uploaded_files)

    ErrorHandler.log_info(
        f"Starting batch processing of {total_files} files with modality '{modality}'"
    )

    for i, uploaded_file in enumerate(uploaded_files):
        if progress_callback:
            progress_callback(i, total_files, uploaded_file.name)

        try:
            # ==Read file content==
            raw = uploaded_file.read()
            text_content = raw.decode("utf-8") if isinstance(raw, bytes) else raw

            # ==Process the file==
            result = process_single_file(
                filename=uploaded_file.name,
                text_content=text_content,
                model_choice=model_choice,
                run_inference_func=run_inference_func,
                label_file_func=label_file_func,
                modality=modality,
                target_len=TARGET_LEN,
            )

            if result:
                results.append(result)

                # ==Add successful results to the results manager==
                if result.get("success", False):
                    ResultsManager.add_results(
                        filename=result["filename"],
                        model_name=model_choice,
                        prediction=result["prediction"],
                        predicted_class=result["predicted_class"],
                        confidence=result["confidence"],
                        logits=result["logits"],
                        ground_truth=result["ground_truth"],
                        processing_time=result["processing_time"],
                        metadata={
                            "confidence_level": result["confidence_level"],
                            "confidence_emoji": result["confidence_emoji"],
                            # Storing the spectrum data for later visualization
                            "x_raw": result["x_raw"],
                            "y_raw": result["y_raw"],
                            "x_resampled": result["x_resampled"],
                            "y_resampled": result["y_resampled"],
                        },
                    )

        except ValueError as e:
            ErrorHandler.log_error(e, f"reading file {uploaded_file.name}")
            results.append(
                {
                    "filename": uploaded_file.name,
                    "success": False,
                    "error": f"Failed to read file: {str(e)}",
                }
            )

    if progress_callback:
        progress_callback(total_files, total_files, "Complete")

    ErrorHandler.log_info(
        f"Completed batch processing: {sum(1 for r in results if r.get('success', False))}/{total_files} successful"
    )

    return results