Spaces:
Running
Running
devjas1
commited on
Commit
·
0a4f1a6
1
Parent(s):
6ea9614
(FEAT)[Data Parsing]: Support multi-format spectrum parsing and robust validation
Browse files- Added 'detect_file_format' to auto-detect file type based on extension and content.
- Implemented 'parse_json_spectrum', 'parse_csv_spectrum', and 'parse_txt_spectrum' for flexible parsing of spectroscopy data.
- Unified entry point 'parse_spectrum_data' uses format detection and delegates to appropriate parser.
- Added 'validate_spectrum_data' to check for NaNs, monotonic x-axis, and reasonable value ranges, with sorting and warnings as needed.
- Updated error handling and logging for parsing failures or unusual data.
- Docstrings and comments improved for clarity.
- utils/multifile.py +297 -56
utils/multifile.py
CHANGED
@@ -1,11 +1,16 @@
|
|
1 |
-
"""Multi-file processing
|
2 |
-
Handles multiple file uploads and iterative processing.
|
|
|
3 |
|
4 |
-
from typing import List, Dict, Any, Tuple, Optional
|
5 |
import time
|
6 |
import streamlit as st
|
7 |
import numpy as np
|
8 |
import pandas as pd
|
|
|
|
|
|
|
|
|
9 |
|
10 |
from .preprocessing import resample_spectrum
|
11 |
from .errors import ErrorHandler, safe_execute
|
@@ -13,83 +18,230 @@ from .results_manager import ResultsManager
|
|
13 |
from .confidence import calculate_softmax_confidence
|
14 |
|
15 |
|
16 |
-
def
|
17 |
-
|
18 |
-
) -> Tuple[np.ndarray, np.ndarray]:
|
19 |
-
"""
|
20 |
-
Parse spectrum data from text content
|
21 |
|
22 |
Args:
|
23 |
-
|
24 |
-
|
25 |
|
26 |
Returns:
|
27 |
-
|
28 |
-
|
29 |
-
Raises:
|
30 |
-
ValueError: If the data cannot be parsed
|
31 |
"""
|
32 |
-
try
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
data_lines.append(line)
|
41 |
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
# ==Try to parse==
|
46 |
-
x_vals, y_vals = [], []
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
x_vals.append(x_val)
|
64 |
y_vals.append(y_val)
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
except ValueError:
|
67 |
ErrorHandler.log_warning(
|
68 |
-
f"Could not parse
|
69 |
)
|
70 |
continue
|
71 |
|
72 |
-
if len(x_vals) < 10:
|
73 |
raise ValueError(
|
74 |
f"Insufficient data points ({len(x_vals)}). Need at least 10 points."
|
75 |
)
|
76 |
|
77 |
-
|
78 |
-
y = np.array(y_vals)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
raise ValueError("Input data contains NaN values")
|
83 |
|
84 |
-
# Check monotonic increasing x
|
85 |
-
if not np.all(np.diff(x) > 0):
|
86 |
-
raise ValueError("Wavenumbers must be strictly increasing")
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
return x, y
|
95 |
|
@@ -97,6 +249,95 @@ def parse_spectrum_data(
|
|
97 |
raise ValueError(f"Failed to parse spectrum data: {str(e)}")
|
98 |
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
def process_single_file(
|
101 |
filename: str,
|
102 |
text_content: str,
|
|
|
1 |
+
"""Multi-file processing utilities for batch inference.
|
2 |
+
Handles multiple file uploads and iterative processing.
|
3 |
+
Supports TXT, CSV, and JSON file formats with automatic detection."""
|
4 |
|
5 |
+
from typing import List, Dict, Any, Tuple, Optional, Union
|
6 |
import time
|
7 |
import streamlit as st
|
8 |
import numpy as np
|
9 |
import pandas as pd
|
10 |
+
import json
|
11 |
+
import csv
|
12 |
+
import io
|
13 |
+
from pathlib import Path
|
14 |
|
15 |
from .preprocessing import resample_spectrum
|
16 |
from .errors import ErrorHandler, safe_execute
|
|
|
18 |
from .confidence import calculate_softmax_confidence
|
19 |
|
20 |
|
21 |
+
def detect_file_format(filename: str, content: str) -> str:
|
22 |
+
"""Automatically detect file format based on exstention and content
|
|
|
|
|
|
|
23 |
|
24 |
Args:
|
25 |
+
filename: Name of the file
|
26 |
+
content: Content of the file
|
27 |
|
28 |
Returns:
|
29 |
+
File format: .'txt', .'csv', .'json'
|
|
|
|
|
|
|
30 |
"""
|
31 |
+
# First try by extension
|
32 |
+
suffix = Path(filename).suffix.lower()
|
33 |
+
if suffix == ".json":
|
34 |
+
try:
|
35 |
+
json.loads(content)
|
36 |
+
return "json"
|
37 |
+
except:
|
38 |
+
pass
|
39 |
+
elif suffix == ".csv":
|
40 |
+
return "csv"
|
41 |
+
elif suffix == ".txt":
|
42 |
+
return "txt"
|
43 |
+
|
44 |
+
# If extension doesn't match or is unclear, try content detection
|
45 |
+
content_stripped = content.strip()
|
46 |
+
|
47 |
+
# Try JSON
|
48 |
+
if content_stripped.startswith(("{", "[")):
|
49 |
+
try:
|
50 |
+
json.loads(content)
|
51 |
+
return "json"
|
52 |
+
except:
|
53 |
+
pass
|
54 |
|
55 |
+
# Try CSV (look for commas in first few lines)
|
56 |
+
lines = content_stripped.split("\n")[:5]
|
57 |
+
comma_count = sum(line.count(",") for line in lines)
|
58 |
+
if comma_count > len(lines): # More commas than lines suggests CSV
|
59 |
+
return "csv"
|
|
|
60 |
|
61 |
+
# Default to TXT
|
62 |
+
return "txt"
|
63 |
|
|
|
|
|
64 |
|
65 |
+
# /////////////////////////////////////////////////////
|
66 |
+
|
67 |
+
|
68 |
+
def parse_json_spectrum(
|
69 |
+
content: str, filename: str = "unknown"
|
70 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
71 |
+
"""
|
72 |
+
Parse spectrum data from JSON format.
|
73 |
+
|
74 |
+
Expected formats:
|
75 |
+
- {"wavenumbers": [...], "intensities": [...]}
|
76 |
+
- {"x": [...], "y": [...]}
|
77 |
+
- [{"wavenumber": val, "intensity": val}, ...]
|
78 |
+
"""
|
79 |
+
|
80 |
+
try:
|
81 |
+
data = json.load(content)
|
82 |
+
|
83 |
+
# Format 1: Object with arrays
|
84 |
+
if isinstance(data, dict):
|
85 |
+
x_key = None
|
86 |
+
y_key = None
|
87 |
+
|
88 |
+
# Try common key names for x-axis
|
89 |
+
for key in ["wavenumbers", "wavenumber", "x", "freq", "frequency"]:
|
90 |
+
if key in data:
|
91 |
+
x_key = key
|
92 |
+
break
|
93 |
+
|
94 |
+
# Try common key names for y-axis
|
95 |
+
for key in ["intensities", "intensity", "y", "counts", "absorbance"]:
|
96 |
+
if key in data:
|
97 |
+
y_key = key
|
98 |
+
break
|
99 |
+
|
100 |
+
if x_key and y_key:
|
101 |
+
x_vals = np.array(data[x_key], dtype=float)
|
102 |
+
y_vals = np.array(data[y_key], dtype=float)
|
103 |
+
return x_vals, y_vals
|
104 |
+
|
105 |
+
# Format 2: Array of objects
|
106 |
+
elif isinstance(data, list) and len(data) > 0 and isinstance(data[0], dict):
|
107 |
+
x_vals = []
|
108 |
+
y_vals = []
|
109 |
+
|
110 |
+
for item in data:
|
111 |
+
# Try to find x and y values
|
112 |
+
x_val = None
|
113 |
+
y_val = None
|
114 |
+
|
115 |
+
for x_key in ["wavenumber", "wavenumbers", "x", "freq"]:
|
116 |
+
if x_key in item:
|
117 |
+
x_val = float(item[x_key])
|
118 |
+
break
|
119 |
+
|
120 |
+
for y_key in ["intensity", "intensities", "y", "counts"]:
|
121 |
+
if y_key in item:
|
122 |
+
y_val = float(item[y_key])
|
123 |
+
break
|
124 |
+
|
125 |
+
if x_val is not None and y_val is not None:
|
126 |
x_vals.append(x_val)
|
127 |
y_vals.append(y_val)
|
128 |
|
129 |
+
if x_vals and y_vals:
|
130 |
+
return np.array(x_vals), np.array(y_vals)
|
131 |
+
|
132 |
+
raise ValueError(
|
133 |
+
"JSON format not recognized. Expected wavenumber/intensity pairs."
|
134 |
+
)
|
135 |
+
|
136 |
+
except json.JSONDecodeError as e:
|
137 |
+
raise ValueError(f"Invalid JSON format: {str(e)}")
|
138 |
+
except Exception as e:
|
139 |
+
raise ValueError(f"Failed to parse JSON spectrum: {str(e)}")
|
140 |
+
|
141 |
+
|
142 |
+
# /////////////////////////////////////////////////////
|
143 |
+
|
144 |
+
|
145 |
+
def parse_csv_spectrum(
|
146 |
+
content: str, filename: str = "unknown"
|
147 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
148 |
+
"""
|
149 |
+
Parse spectrum data from CSV format.
|
150 |
+
|
151 |
+
Handles various CSV formats with headers or without.
|
152 |
+
"""
|
153 |
+
try:
|
154 |
+
# Use StringIO to treat string as file-like object
|
155 |
+
csv_file = io.StringIO(content)
|
156 |
+
|
157 |
+
# Try to detect delimiter
|
158 |
+
sample = content[:1024]
|
159 |
+
delimiter = ","
|
160 |
+
if sample.count(";") > sample.count(","):
|
161 |
+
delimiter = ";"
|
162 |
+
elif sample.count("\t") > sample.count(","):
|
163 |
+
delimiter = "\t"
|
164 |
+
|
165 |
+
# Read CSV
|
166 |
+
csv_reader = csv.reader(csv_file, delimiter=delimiter)
|
167 |
+
rows = list(csv_reader)
|
168 |
+
|
169 |
+
if not rows:
|
170 |
+
raise ValueError("Empty CSV file")
|
171 |
+
|
172 |
+
# Check if first row is header
|
173 |
+
has_header = False
|
174 |
+
try:
|
175 |
+
# If first row contains non-numeric data, it's likely a header
|
176 |
+
float(rows[0][0])
|
177 |
+
float(rows[0][1])
|
178 |
+
except (ValueError, IndexError):
|
179 |
+
has_header = True
|
180 |
+
|
181 |
+
data_rows = rows[1:] if has_header else rows
|
182 |
+
|
183 |
+
# Extract x and y values
|
184 |
+
x_vals = []
|
185 |
+
y_vals = []
|
186 |
+
|
187 |
+
for i, row in enumerate(data_rows):
|
188 |
+
if len(row) < 2:
|
189 |
+
continue
|
190 |
+
|
191 |
+
try:
|
192 |
+
x_val = float(row[0])
|
193 |
+
y_val = float(row[1])
|
194 |
+
x_vals.append(x_val)
|
195 |
+
y_vals.append(y_val)
|
196 |
except ValueError:
|
197 |
ErrorHandler.log_warning(
|
198 |
+
f"Could not parse CSV row {i+1}: {row}", f"Parsing {filename}"
|
199 |
)
|
200 |
continue
|
201 |
|
202 |
+
if len(x_vals) < 10:
|
203 |
raise ValueError(
|
204 |
f"Insufficient data points ({len(x_vals)}). Need at least 10 points."
|
205 |
)
|
206 |
|
207 |
+
return np.array(x_vals), np.array(y_vals)
|
|
|
208 |
|
209 |
+
except Exception as e:
|
210 |
+
raise ValueError(f"Failed to parse CSV spectrum: {str(e)}")
|
|
|
211 |
|
|
|
|
|
|
|
212 |
|
213 |
+
# /////////////////////////////////////////////////////
|
214 |
+
|
215 |
+
|
216 |
+
def parse_spectrum_data(
|
217 |
+
text_content: str, filename: str = "unknown", file_format: Optional[str] = None
|
218 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
219 |
+
"""
|
220 |
+
Parse spectrum data from text content with automatic format detection.
|
221 |
+
Args:
|
222 |
+
text_content: Raw text content of the spectrum file
|
223 |
+
filename: Name of the file for error reporting
|
224 |
+
file_format: Force specific format ('txt', 'csv', 'json') or None for auto-detection
|
225 |
+
Returns:
|
226 |
+
Tuple of (x_values, y_values) as numpy arrays
|
227 |
+
Raises:
|
228 |
+
ValueError: If the data cannot be parsed
|
229 |
+
"""
|
230 |
+
try:
|
231 |
+
# Detect format if not specified
|
232 |
+
if file_format is None:
|
233 |
+
file_format = detect_file_format(filename, text_content)
|
234 |
+
|
235 |
+
# Parse based on detected/specified format
|
236 |
+
if file_format == "json":
|
237 |
+
x, y = parse_json_spectrum(text_content, filename)
|
238 |
+
elif file_format == "csv":
|
239 |
+
x, y = parse_csv_spectrum(text_content, filename)
|
240 |
+
else: # Default to TXT format
|
241 |
+
x, y = parse_txt_spectrum(text_content, filename)
|
242 |
+
|
243 |
+
# Common validation for all formats
|
244 |
+
validate_spectrum_data(x, y, filename)
|
245 |
|
246 |
return x, y
|
247 |
|
|
|
249 |
raise ValueError(f"Failed to parse spectrum data: {str(e)}")
|
250 |
|
251 |
|
252 |
+
# /////////////////////////////////////////////////////
|
253 |
+
|
254 |
+
|
255 |
+
def parse_txt_spectrum(
|
256 |
+
content: str, filename: str = "unknown"
|
257 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
258 |
+
"""
|
259 |
+
Parse spectrum data from TXT format (original implementation).
|
260 |
+
"""
|
261 |
+
lines = content.strip().split("\n")
|
262 |
+
|
263 |
+
# ==Remove empty lines and comments==
|
264 |
+
data_lines = []
|
265 |
+
for line in lines:
|
266 |
+
line = line.strip()
|
267 |
+
if line and not line.startswith("#") and not line.startswith("%"):
|
268 |
+
data_lines.append(line)
|
269 |
+
|
270 |
+
if not data_lines:
|
271 |
+
raise ValueError("No data lines found in file")
|
272 |
+
|
273 |
+
# ==Try to parse==
|
274 |
+
x_vals, y_vals = [], []
|
275 |
+
|
276 |
+
for i, line in enumerate(data_lines):
|
277 |
+
try:
|
278 |
+
# Handle different separators
|
279 |
+
parts = line.replace(",", " ").split()
|
280 |
+
numbers = [
|
281 |
+
p
|
282 |
+
for p in parts
|
283 |
+
if p.replace(".", "", 1)
|
284 |
+
.replace("-", "", 1)
|
285 |
+
.replace("+", "", 1)
|
286 |
+
.isdigit()
|
287 |
+
]
|
288 |
+
if len(numbers) >= 2:
|
289 |
+
x_val = float(numbers[0])
|
290 |
+
y_val = float(numbers[1])
|
291 |
+
x_vals.append(x_val)
|
292 |
+
y_vals.append(y_val)
|
293 |
+
|
294 |
+
except ValueError:
|
295 |
+
ErrorHandler.log_warning(
|
296 |
+
f"Could not parse line {i+1}: {line}", f"Parsing {filename}"
|
297 |
+
)
|
298 |
+
continue
|
299 |
+
|
300 |
+
if len(x_vals) < 10: # ==Need minimum points for interpolation==
|
301 |
+
raise ValueError(
|
302 |
+
f"Insufficient data points ({len(x_vals)}). Need at least 10 points."
|
303 |
+
)
|
304 |
+
|
305 |
+
return np.array(x_vals), np.array(y_vals)
|
306 |
+
|
307 |
+
|
308 |
+
# /////////////////////////////////////////////////////
|
309 |
+
|
310 |
+
|
311 |
+
def validate_spectrum_data(x: np.ndarray, y: np.ndarray, filename: str) -> None:
|
312 |
+
"""
|
313 |
+
Validate parsed spectrum data for common issues.
|
314 |
+
"""
|
315 |
+
# Check for NaNs
|
316 |
+
if np.any(np.isnan(x)) or np.any(np.isnan(y)):
|
317 |
+
raise ValueError("Input data contains NaN values")
|
318 |
+
|
319 |
+
# Check monotonic increasing x (sort if needed)
|
320 |
+
if not np.all(np.diff(x) >= 0):
|
321 |
+
# Sort by x values if not monotonic
|
322 |
+
sort_idx = np.argsort(x)
|
323 |
+
x = x[sort_idx]
|
324 |
+
y = y[sort_idx]
|
325 |
+
ErrorHandler.log_warning(
|
326 |
+
"Wavenumbers were not monotonic - data has been sorted",
|
327 |
+
f"Parsing {filename}",
|
328 |
+
)
|
329 |
+
|
330 |
+
# Check reasonable range for spectroscopy
|
331 |
+
if min(x) < 0 or max(x) > 10000 or (max(x) - min(x)) < 100:
|
332 |
+
ErrorHandler.log_warning(
|
333 |
+
f"Unusual wavenumber range: {min(x):.1f} - {max(x):.1f} cm⁻¹",
|
334 |
+
f"Parsing {filename}",
|
335 |
+
)
|
336 |
+
|
337 |
+
|
338 |
+
# /////////////////////////////////////////////////////
|
339 |
+
|
340 |
+
|
341 |
def process_single_file(
|
342 |
filename: str,
|
343 |
text_content: str,
|