Spaces:
Running
(FEAT): Add utilities for multi-file batch processing and inference
Browse files- Implemented `parse_spectrum_data` to parse spectrum data from text files, handling comments and malformed lines.
- Added `process_single_file` to handle the complete pipeline for a single file, including parsing, resampling, inference, confidence calculation, and ground truth extraction.
- Developed `process_multiple_files` to process multiple uploaded files iteratively, with support for progress tracking and error handling.
- Integrated `ResultsManager` to store successful inference results in session state.
- Added `display_batch_results` to present batch processing results in the Streamlit UI, including success and failure summaries.
- Created `create_batch_uploader` to provide a Streamlit widget for uploading multiple spectrum files.
- Enhanced error handling and logging using `ErrorHandler` for better debugging and user feedback.
- Ensured compatibility with custom model loading, inference, and labeling functions for flexibility."
- utils/multifile.py +333 -0
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Multi-file processing utiltities for batch inference.
|
2 |
+
Handles multiple file uploads and iterative processing."""
|
3 |
+
|
4 |
+
from typing import List, Dict, Any, Tuple, Optional
|
5 |
+
import time
|
6 |
+
import streamlit as st
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
from .preprocessing import resample_spectrum
|
10 |
+
from .errors import ErrorHandler, safe_execute
|
11 |
+
from .results_manager import ResultsManager
|
12 |
+
from .confidence import calculate_softmax_confidence
|
13 |
+
|
14 |
+
def parse_spectrum_data(text_content: str, filename: str = "unknown") -> Tuple[np.ndarray, np.ndarray]:
|
15 |
+
"""
|
16 |
+
Parse spectrum data from text content
|
17 |
+
|
18 |
+
Args:
|
19 |
+
text_content: Raw text content of the spectrum file
|
20 |
+
filename: Name of the file for error reporting
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
Tuple of (x_values, y_values) as numpy arrays
|
24 |
+
|
25 |
+
Raises:
|
26 |
+
ValueError: If the data cannot be parsed
|
27 |
+
"""
|
28 |
+
try:
|
29 |
+
lines = text_content.strip().split('\n')
|
30 |
+
|
31 |
+
#==Remove empty lines and comments==
|
32 |
+
data_lines = []
|
33 |
+
for line in lines:
|
34 |
+
line = line.strip()
|
35 |
+
if line and not line.startswith('#') and not line.startswith('%'):
|
36 |
+
data_lines.append(line)
|
37 |
+
|
38 |
+
if not data_lines:
|
39 |
+
raise ValueError("No data lines found in file")
|
40 |
+
|
41 |
+
#==Try to parse==
|
42 |
+
x_vals, y_vals = [], []
|
43 |
+
|
44 |
+
for i, line in enumerate(data_lines):
|
45 |
+
try:
|
46 |
+
#=Try comma separation first, then space=
|
47 |
+
if ',' in line:
|
48 |
+
parts = line.split(',')
|
49 |
+
else:
|
50 |
+
parts = line.split()
|
51 |
+
|
52 |
+
if len(parts) < 2:
|
53 |
+
ErrorHandler.log_warning(f"Line {i+1} has fewer than 2 columns, skipping", f"Parsing {filename}")
|
54 |
+
continue
|
55 |
+
|
56 |
+
x_val = float(parts[0].strip())
|
57 |
+
y_val = float(parts[1].split())
|
58 |
+
|
59 |
+
x_vals.append(x_val)
|
60 |
+
y_vals.append(y_val)
|
61 |
+
|
62 |
+
except (ValueError, IndexError) as e:
|
63 |
+
ErrorHandler.log_warning(f"Could not parse line {i+1}: {line}", f"Parsing {filename}")
|
64 |
+
continue
|
65 |
+
|
66 |
+
if len(x_vals) < 10: #==Need minimum points for interpolation==
|
67 |
+
raise ValueError(f"Insufficient data points ({len(x_vals)}). Need at least 10 points.")
|
68 |
+
|
69 |
+
return np.array(x_vals), np.array(y_vals)
|
70 |
+
|
71 |
+
except Exception as e:
|
72 |
+
raise ValueError(f"Failed to parse spectrum data: {str(e)}")
|
73 |
+
|
74 |
+
def process_single_file(
|
75 |
+
filename: str,
|
76 |
+
text_content: str,
|
77 |
+
model_choice: str,
|
78 |
+
load_model_func,
|
79 |
+
run_inference_func,
|
80 |
+
label_file_func
|
81 |
+
) -> Optional[Dict[str, Any]]:
|
82 |
+
"""
|
83 |
+
Process a single spectrum file
|
84 |
+
|
85 |
+
Args:
|
86 |
+
filename: Name of the file
|
87 |
+
text_content: Raw text content
|
88 |
+
model_choice: Selected model name
|
89 |
+
load_model_func: Function to load the model
|
90 |
+
run_inference_func: Function to run inference
|
91 |
+
label_file_func: Function to extract ground truth label
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
Dictionary with processing results or None if failed
|
95 |
+
"""
|
96 |
+
start_time = time.time()
|
97 |
+
|
98 |
+
try:
|
99 |
+
#==Parse spectrum data==
|
100 |
+
x_raw, y_raw, success = safe_execute(
|
101 |
+
parse_spectrum_data,
|
102 |
+
text_content,
|
103 |
+
filename,
|
104 |
+
error_context=f"parsing {filename}",
|
105 |
+
show_error=False
|
106 |
+
)
|
107 |
+
|
108 |
+
if not success:
|
109 |
+
return None
|
110 |
+
|
111 |
+
#==Resample spectrum==
|
112 |
+
x_resampled, y_resampled, success = safe_execute(
|
113 |
+
resample_spectrum,
|
114 |
+
x_raw,
|
115 |
+
y_raw,
|
116 |
+
500, # TARGET_LEN
|
117 |
+
error_context=f"resampling {filename}",
|
118 |
+
show_error=False
|
119 |
+
)
|
120 |
+
|
121 |
+
if not success:
|
122 |
+
return None
|
123 |
+
|
124 |
+
#==Run inference==
|
125 |
+
prediction, logits_list, probs, inference_time, logits, success = safe_execute(
|
126 |
+
run_inference_func,
|
127 |
+
y_resampled,
|
128 |
+
model_choice,
|
129 |
+
error_context=f"inference on {filename}",
|
130 |
+
show_error=False
|
131 |
+
)
|
132 |
+
|
133 |
+
if not success or prediction is None:
|
134 |
+
ErrorHandler.log_error(Exception("Inference failed"), f"processing {filename}")
|
135 |
+
return None
|
136 |
+
|
137 |
+
#==Calculate confidence==
|
138 |
+
if logits is not None:
|
139 |
+
probs_np, max_confidence, confidence_level, confidence_emoji = calculate_softmax_confidence(logits)
|
140 |
+
else:
|
141 |
+
probs_np = np.array([])
|
142 |
+
max_confidence = 0.0
|
143 |
+
confidence_level = "LOW"
|
144 |
+
confidence_emoji = "🔴"
|
145 |
+
|
146 |
+
#==Get ground truth==
|
147 |
+
try:
|
148 |
+
ground_truth = label_file_func(filename)
|
149 |
+
ground_truth = ground_truth if ground_truth >= 0 else None
|
150 |
+
except Exception:
|
151 |
+
ground_truth = None
|
152 |
+
|
153 |
+
#==Get predicted class==
|
154 |
+
label_map = {0: "Stable (Unweathered)", 1: "Weathered (Degraded)"}
|
155 |
+
predicted_class = label_map.get(prediction, f"Unknown ({prediction})")
|
156 |
+
|
157 |
+
processing_time = time.time() - start_time
|
158 |
+
|
159 |
+
return {
|
160 |
+
"filename": filename,
|
161 |
+
"success": True,
|
162 |
+
"prediction": prediction,
|
163 |
+
"predicted_class": predicted_class,
|
164 |
+
"confidence": max_confidence,
|
165 |
+
"confidence_level": confidence_level,
|
166 |
+
"confidence_emoji": confidence_emoji,
|
167 |
+
"logits": logits_list if logits_list else [],
|
168 |
+
"probabilities": probs_np.tolist() if len(probs_np) > 0 else [],
|
169 |
+
"ground_truth": ground_truth,
|
170 |
+
"processing_time": processing_time,
|
171 |
+
"x_raw": x_raw,
|
172 |
+
"y_raw": y_raw,
|
173 |
+
"x_resampled": x_resampled,
|
174 |
+
"y_resampled": y_resampled,
|
175 |
+
}
|
176 |
+
|
177 |
+
except Exception as e:
|
178 |
+
ErrorHandler.log_error(e, f"processing {filename}")
|
179 |
+
return {
|
180 |
+
"filename": filename,
|
181 |
+
"success": False,
|
182 |
+
"error": str(e),
|
183 |
+
"processing_time": time.time() - start_time
|
184 |
+
}
|
185 |
+
|
186 |
+
def process_multiple_files(
|
187 |
+
uploaded_files: List,
|
188 |
+
model_choice: str,
|
189 |
+
load_model_func,
|
190 |
+
run_inference_func,
|
191 |
+
label_file_func,
|
192 |
+
progress_callback=None
|
193 |
+
) -> List[Dict[str, Any]]:
|
194 |
+
"""
|
195 |
+
Process multiple uploaded files
|
196 |
+
|
197 |
+
Args:
|
198 |
+
uploaded_files: List of uploaded file objects
|
199 |
+
model_choice: Selected model name
|
200 |
+
load_model_func: Function to load the model
|
201 |
+
run_inference_func: Function to run inference
|
202 |
+
label_file_func: Function to extract ground truth label
|
203 |
+
progress_callback: Optional callback to update progress
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
List of processing results
|
207 |
+
"""
|
208 |
+
results = []
|
209 |
+
total_files = len(uploaded_files)
|
210 |
+
|
211 |
+
ErrorHandler.log_info(f"Starting batch processing of {total_files} files")
|
212 |
+
|
213 |
+
for i, uploaded_file in enumerate(uploaded_files):
|
214 |
+
if progress_callback:
|
215 |
+
progress_callback(i, total_files, uploaded_file.name)
|
216 |
+
|
217 |
+
try:
|
218 |
+
#==Read file content==
|
219 |
+
raw = uploaded_file.read()
|
220 |
+
text_content = raw.decode('utf-8') if isinstance(raw, bytes) else raw
|
221 |
+
|
222 |
+
#==Process the file==
|
223 |
+
result = process_single_file(
|
224 |
+
uploaded_file.name,
|
225 |
+
text_content,
|
226 |
+
model_choice,
|
227 |
+
load_model_func,
|
228 |
+
run_inference_func,
|
229 |
+
label_file_func
|
230 |
+
)
|
231 |
+
|
232 |
+
if result:
|
233 |
+
results.append(result)
|
234 |
+
|
235 |
+
#==Add successful results to the results manager==
|
236 |
+
if result.get("success", False):
|
237 |
+
ResultsManager.add_results(
|
238 |
+
filename=result["filename"],
|
239 |
+
model_name=model_choice,
|
240 |
+
prediction=result["prediction"],
|
241 |
+
predicted_class=result["predicted_class"],
|
242 |
+
confidence=result["confidence"],
|
243 |
+
logits=result["logits"],
|
244 |
+
ground_truth=result["ground_truth"],
|
245 |
+
processing_time=result["processing_time"],
|
246 |
+
metadata={
|
247 |
+
"confidence_level": result["confidence_level"],
|
248 |
+
"confidence_emoji": result["confidence_emoji"]
|
249 |
+
}
|
250 |
+
)
|
251 |
+
|
252 |
+
except Exception as e:
|
253 |
+
ErrorHandler.log_error(e, f"reading file {uploaded_file.name}")
|
254 |
+
results.append({
|
255 |
+
"filename": uploaded_file.name,
|
256 |
+
"success": False,
|
257 |
+
"error": f"Failed to read file: {str(e)}"
|
258 |
+
})
|
259 |
+
|
260 |
+
if progress_callback:
|
261 |
+
progress_callback(total_files, total_files, "Complete")
|
262 |
+
|
263 |
+
ErrorHandler.log_info(f"Completed batch processing: {sum(1 for r in results if r.get('success', False))}/{total_files} successful")
|
264 |
+
|
265 |
+
return results
|
266 |
+
|
267 |
+
def display_batch_results(results: List[Dict[str, Any]]) -> None:
|
268 |
+
"""
|
269 |
+
Display batch processing results in the UI
|
270 |
+
|
271 |
+
Args:
|
272 |
+
results: List of processing results
|
273 |
+
"""
|
274 |
+
if not results:
|
275 |
+
st.warning("No results to display")
|
276 |
+
return
|
277 |
+
|
278 |
+
successful = [r for r in results if r.get("success", False)]
|
279 |
+
failed = [r for r in results if not r.get("success", False)]
|
280 |
+
|
281 |
+
#==Summary==
|
282 |
+
col1, col2, col3 = st.columns(3)
|
283 |
+
with col1:
|
284 |
+
st.metric("Total Files", len(results))
|
285 |
+
with col2:
|
286 |
+
st.metric("Successful", len(successful), delta=f"{len(successful)/len(results)*100:.1f}%")
|
287 |
+
with col3:
|
288 |
+
st.metric("Failed", len(failed), delta=f"-{len(failed)/len(results)*100:.1f}%" if failed else "0%")
|
289 |
+
|
290 |
+
#==Results tabs==
|
291 |
+
tab1, tab2 = st.tabs(["✅Successful", "❌ Failed"])
|
292 |
+
|
293 |
+
with tab1:
|
294 |
+
if successful:
|
295 |
+
for result in successful:
|
296 |
+
with st.expander(f"{result['filename']}", expanded=False):
|
297 |
+
col1, col2 = st.columns(2)
|
298 |
+
with col1:
|
299 |
+
st.write(f"**Prediction:** {result['predicted_class']}")
|
300 |
+
st.write(f"**Confidence:** {result['confidence_emoji']} {result['confidence_level']} ({result['confidence']:.3f})")
|
301 |
+
with col2:
|
302 |
+
st.write(f"**Processing Time:** {result['processing_time']:.3f}s")
|
303 |
+
if result['ground_truth'] is not None:
|
304 |
+
gt_label = {0: "Stable", 1: "Weathered"}.get(result['ground_truth'], "Unknown")
|
305 |
+
correct = "✅" if result['prediction'] == result['ground_truth'] else "❌"
|
306 |
+
st.write(f"**Ground Truth:** {gt_label} {correct}")
|
307 |
+
else:
|
308 |
+
st.info("No successful results")
|
309 |
+
|
310 |
+
with tab2:
|
311 |
+
if failed:
|
312 |
+
for result in failed:
|
313 |
+
with st.expander(f"❌ {result['filename']}", expanded=False):
|
314 |
+
st.error(f"Error: {result.get('error', 'Unknown error')}")
|
315 |
+
else:
|
316 |
+
st.success("No failed files!")
|
317 |
+
|
318 |
+
def create_batch_uploader() -> List:
|
319 |
+
"""
|
320 |
+
Create multi-file uploader widget
|
321 |
+
|
322 |
+
Returns:
|
323 |
+
List of uploaded files
|
324 |
+
"""
|
325 |
+
uploaded_files = st.file_uploader(
|
326 |
+
"Upload multiple Raman spectrum files (.txt)",
|
327 |
+
type="txt",
|
328 |
+
accept_multiple_files=True,
|
329 |
+
help="Select multiple .txt files with wavenumber and intensity columns",
|
330 |
+
key="batch_uploader"
|
331 |
+
)
|
332 |
+
|
333 |
+
return uploaded_files if uploaded_files else []
|