Spaces:
Sleeping
Sleeping
File size: 11,878 Bytes
11e12c3 ba49293 e56ed1f ee612c3 7962386 ba49293 e56ed1f ba49293 e56ed1f ba49293 ef610f3 41fa9c6 ee612c3 ba49293 ee612c3 ba49293 c9fddab ee612c3 ba49293 41fa9c6 ba49293 ee612c3 ba49293 41fa9c6 98e9d9e 7962386 ba49293 ee612c3 ba49293 11e12c3 ba49293 41fa9c6 ba49293 e56ed1f ba49293 ee612c3 ba49293 ee612c3 ba49293 41fa9c6 ba49293 41fa9c6 ba49293 41fa9c6 ba49293 41fa9c6 ba49293 41fa9c6 ee612c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# app.py
import gradio as gr
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline, BitsAndBytesConfig
from rdkit import Chem
from rdkit.Chem import Draw, rdFMCS
from rdkit.Chem.Draw import MolToImage
# PIL is imported as Image by rdkit.Chem.Draw.MolToImage, but explicit import is good practice if used directly.
# from PIL import Image
import pandas as pd
import io
import base64
import logging
# Set up logging to monitor quantization effects
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Quantization Configuration ---
def get_quantization_config():
"""
Configure 8-bit quantization for model optimization.
Falls back gracefully if bitsandbytes is not available.
"""
try:
# 8-bit quantization configuration - good balance of speed and quality
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
bnb_8bit_compute_dtype=torch.float16,
bnb_8bit_use_double_quant=True, # Nested quantization for better compression
)
logger.info("8-bit quantization configuration loaded successfully")
return quantization_config
except ImportError:
logger.warning("bitsandbytes not available, falling back to standard loading")
return None
except Exception as e:
logger.warning(f"Quantization setup failed: {e}, using standard loading")
return None
def get_torch_dtype():
"""Get appropriate torch dtype based on available hardware."""
if torch.cuda.is_available():
return torch.float16 # Use half precision on GPU
else:
return torch.float32 # Keep full precision on CPU
# --- Optimized Model Loading ---
def load_optimized_models():
"""Load models with quantization and other optimizations."""
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = get_torch_dtype()
quantization_config = get_quantization_config()
logger.info(f"Loading models on device: {device} with dtype: {torch_dtype}")
# Model name
model_name = "seyonec/PubChem10M_SMILES_BPE_450k"
# Load tokenizer (doesn't need quantization)
fill_mask_tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load model with quantization if available
model_kwargs = {
"torch_dtype": torch_dtype,
}
if quantization_config is not None and torch.cuda.is_available(): # Quantization typically for GPU
model_kwargs["quantization_config"] = quantization_config
# device_map="auto" is often used with bitsandbytes for automatic distribution
model_kwargs["device_map"] = "auto"
elif torch.cuda.is_available():
model_kwargs["device_map"] = "auto" # For non-quantized GPU loading
else:
model_kwargs["device_map"] = None # For CPU
try:
# Masked LM Model
fill_mask_model = AutoModelForMaskedLM.from_pretrained(
model_name,
**model_kwargs
)
fill_mask_model.eval() # Set model to evaluation mode for inference
# Create optimized pipeline
# Let pipeline infer device from model if possible, or set based on model's device
pipeline_device = fill_mask_model.device.index if hasattr(fill_mask_model.device, 'type') and fill_mask_model.device.type == "cuda" else -1
fill_mask_pipeline = pipeline(
'fill-mask',
model=fill_mask_model,
tokenizer=fill_mask_tokenizer,
device=pipeline_device, # Use model's device
)
logger.info("Models loaded successfully with optimizations")
return fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline
except Exception as e:
logger.error(f"Error loading optimized models: {e}")
# Fallback to standard loading
logger.info("Falling back to standard model loading...")
return load_standard_models(model_name)
def load_standard_models(model_name):
"""Fallback standard model loading without quantization."""
fill_mask_tokenizer = AutoTokenizer.from_pretrained(model_name)
fill_mask_model = AutoModelForMaskedLM.from_pretrained(model_name)
# Determine device for standard loading
device_idx = 0 if torch.cuda.is_available() else -1
fill_mask_pipeline = pipeline('fill-mask', model=fill_mask_model, tokenizer=fill_mask_tokenizer, device=device_idx)
if torch.cuda.is_available():
fill_mask_model.to("cuda")
return fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline
# Load models with optimizations
fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline = load_optimized_models()
# --- Memory Management Utilities ---
def clear_gpu_cache():
"""Clear CUDA cache to free up memory."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
# --- Helper Functions from Notebook (adapted) ---
def get_mol(smiles):
"""Converts SMILES to RDKit Mol object and Kekulizes it."""
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return None
try:
Chem.Kekulize(mol)
except: # Kekulization can fail for some structures
pass
return mol
def find_matches_one(mol, submol_smarts):
"""Finds all matching atoms for a SMARTS pattern in a molecule."""
if not mol or not submol_smarts:
return []
submol = Chem.MolFromSmarts(submol_smarts)
if not submol:
return []
matches = mol.GetSubstructMatches(submol)
return matches
def get_image_with_highlight(mol, atomset=None, size=(300, 300)):
"""Draws molecule with optional atom highlighting."""
if mol is None:
return None
highlight_color = (0, 1, 0, 0.5) # Green with some transparency
# Ensure atomset contains integers if not None or empty
valid_atomset = []
if atomset:
try:
valid_atomset = [int(a) for a in atomset]
except ValueError:
logger.warning(f"Invalid atom in atomset: {atomset}. Proceeding without highlighting problematic atoms.")
valid_atomset = [int(a) for a in atomset if str(a).isdigit()] # Filter out non-integers
img = MolToImage(mol, size=size, fitImage=True,
highlightAtoms=valid_atomset if valid_atomset else [],
highlightAtomColors={i: highlight_color for i in valid_atomset} if valid_atomset else {})
return img
# --- Optimized Gradio Interface Functions ---
def predict_and_visualize_masked_smiles(smiles_mask, substructure_smarts_highlight="CC=CC"):
"""
Predicts masked tokens in a SMILES string, shows scores, and visualizes molecules.
Optimized with memory management. Returns 7 items for Gradio outputs.
"""
if fill_mask_tokenizer.mask_token not in smiles_mask:
# Return 7 items for the 7 output components
return pd.DataFrame(), None, None, None, None, None, "Error: Input SMILES must contain a mask token (e.g., <mask>)."
try:
# Use torch.no_grad() for inference to save memory
with torch.no_grad():
predictions = fill_mask_pipeline(smiles_mask, top_k=10) # Get more to filter for valid ones
except Exception as e:
clear_gpu_cache() # Clear cache on error
# Return 7 items
return pd.DataFrame(), None, None, None, None, None, f"Error during prediction: {str(e)}"
results_data = []
image_list = []
valid_predictions_count = 0
for pred in predictions:
if valid_predictions_count >= 5:
break
predicted_smiles = pred['sequence']
score = pred['score']
mol = get_mol(predicted_smiles)
if mol:
results_data.append({"Predicted SMILES": predicted_smiles, "Score": f"{score:.4f}"})
atom_matches_indices = []
if substructure_smarts_highlight:
matches = find_matches_one(mol, substructure_smarts_highlight)
if matches:
atom_matches_indices = list(matches[0]) # Highlight first match
img = get_image_with_highlight(mol, atomset=atom_matches_indices)
image_list.append(img)
valid_predictions_count += 1
# Pad image_list if fewer than 5 valid predictions
while len(image_list) < 5:
image_list.append(None)
df_results = pd.DataFrame(results_data)
# Clear cache after inference
clear_gpu_cache()
status_message = "Prediction successful." if valid_predictions_count > 0 else "No valid molecules found for top predictions."
# Unpack image_list into individual image outputs + df_results + status_message
return df_results, image_list[0], image_list[1], image_list[2], image_list[3], image_list[4], status_message
def display_molecule_image(smiles_string):
"""
Displays a 2D image of a molecule from its SMILES string.
"""
if not smiles_string:
return None, "Please enter a SMILES string."
mol = get_mol(smiles_string)
if mol is None:
return None, "Invalid SMILES string."
img = MolToImage(mol, size=(400, 400), fitImage=True)
return img, "Molecule displayed."
# --- Gradio Interface Definition ---
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("# ChemBERTa SMILES Utilities Dashboard")
with gr.Tab("Masked SMILES Prediction"):
gr.Markdown("Enter a SMILES string with a `<mask>` token (e.g., `C1=CC=CC<mask>C1`) to predict possible completions.")
with gr.Row():
smiles_input_masked = gr.Textbox(label="SMILES String with Mask", value="C1=CC=CC<mask>C1")
substructure_input = gr.Textbox(label="Substructure to Highlight (SMARTS)", value="C=C")
predict_button_masked = gr.Button("Predict and Visualize")
status_masked = gr.Textbox(label="Status", interactive=False)
predictions_table = gr.DataFrame(label="Top Predictions & Scores")
gr.Markdown("### Predicted Molecule Visualizations (Top 5 Valid)")
with gr.Row():
img_out_1 = gr.Image(label="Prediction 1", type="pil", interactive=False)
img_out_2 = gr.Image(label="Prediction 2", type="pil", interactive=False)
img_out_3 = gr.Image(label="Prediction 3", type="pil", interactive=False)
img_out_4 = gr.Image(label="Prediction 4", type="pil", interactive=False)
img_out_5 = gr.Image(label="Prediction 5", type="pil", interactive=False)
# Automatically populate on load for the default example
demo.load(
lambda: predict_and_visualize_masked_smiles("C1=CC=CC<mask>C1", "C=C"),
inputs=None,
outputs=[predictions_table, img_out_1, img_out_2, img_out_3, img_out_4, img_out_5, status_masked]
)
predict_button_masked.click(
predict_and_visualize_masked_smiles,
inputs=[smiles_input_masked, substructure_input],
outputs=[predictions_table, img_out_1, img_out_2, img_out_3, img_out_4, img_out_5, status_masked]
)
with gr.Tab("Molecule Viewer"):
gr.Markdown("Enter a SMILES string to display its 2D structure.")
smiles_input_viewer = gr.Textbox(label="SMILES String", value="C1=CC=CC=C1")
view_button_molecule = gr.Button("View Molecule")
status_viewer = gr.Textbox(label="Status", interactive=False)
molecule_image_output = gr.Image(label="Molecule Structure", type="pil", interactive=False)
# Automatically populate on load for the default example
demo.load(
lambda: display_molecule_image("C1=CC=CC=C1"),
inputs=None,
outputs=[molecule_image_output, status_viewer]
)
view_button_molecule.click(
display_molecule_image,
inputs=[smiles_input_viewer],
outputs=[molecule_image_output, status_viewer]
)
if __name__ == "__main__":
demo.launch()
|