Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,87 +1,20 @@
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import
|
|
|
|
| 3 |
from rdkit import Chem
|
| 4 |
from rdkit.Chem import Draw, AllChem
|
| 5 |
-
from rdkit.Chem.Draw import
|
| 6 |
-
import
|
| 7 |
import io
|
| 8 |
import base64
|
| 9 |
import logging
|
| 10 |
-
|
| 11 |
-
import torch
|
| 12 |
-
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline, BitsAndBytesConfig
|
| 13 |
|
| 14 |
# Set up logging to monitor quantization effects
|
| 15 |
logging.basicConfig(level=logging.INFO)
|
| 16 |
logger = logging.getLogger(__name__)
|
| 17 |
|
| 18 |
-
# --- Page Configuration ---
|
| 19 |
-
st.set_page_config(
|
| 20 |
-
page_title="Molecule Explorer & Predictor",
|
| 21 |
-
page_icon="🔬",
|
| 22 |
-
layout="wide",
|
| 23 |
-
initial_sidebar_state="collapsed",
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
-
# Custom CSS for a professional, minimalist look (adapted from drug_app.txt)
|
| 27 |
-
def apply_custom_styling():
|
| 28 |
-
st.markdown(
|
| 29 |
-
"""
|
| 30 |
-
<style>
|
| 31 |
-
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
|
| 32 |
-
|
| 33 |
-
html, body, [class*="st-"] {
|
| 34 |
-
font-family: 'Roboto', sans-serif;
|
| 35 |
-
}
|
| 36 |
-
|
| 37 |
-
.stApp {
|
| 38 |
-
background-color: rgb(28, 28, 28);
|
| 39 |
-
color: white;
|
| 40 |
-
}
|
| 41 |
-
|
| 42 |
-
/* Tab styles */
|
| 43 |
-
.stTabs [data-baseweb="tab-list"] {
|
| 44 |
-
gap: 24px;
|
| 45 |
-
}
|
| 46 |
-
|
| 47 |
-
.stTabs [data-baseweb="tab"] {
|
| 48 |
-
height: 50px;
|
| 49 |
-
white-space: pre-wrap;
|
| 50 |
-
background: none;
|
| 51 |
-
border-radius: 0px;
|
| 52 |
-
border-bottom: 2px solid #333;
|
| 53 |
-
padding: 10px 4px;
|
| 54 |
-
color: #AAA;
|
| 55 |
-
}
|
| 56 |
-
|
| 57 |
-
.stTabs [data-baseweb="tab"]:hover {
|
| 58 |
-
background: #222;
|
| 59 |
-
color: #FFF;
|
| 60 |
-
}
|
| 61 |
-
|
| 62 |
-
.stTabs [aria-selected="true"] {
|
| 63 |
-
border-bottom: 2px solid #00A0FF; /* Highlight color for active tab */
|
| 64 |
-
color: #FFF;
|
| 65 |
-
}
|
| 66 |
-
|
| 67 |
-
/* Button styles */
|
| 68 |
-
.stButton>button {
|
| 69 |
-
border-color: #00A0FF;
|
| 70 |
-
color: #00A0FF;
|
| 71 |
-
}
|
| 72 |
-
|
| 73 |
-
.stButton>button:hover {
|
| 74 |
-
border-color: #FFF;
|
| 75 |
-
color: #FFF;
|
| 76 |
-
background-color: #00A0FF;
|
| 77 |
-
}
|
| 78 |
-
</style>
|
| 79 |
-
""",
|
| 80 |
-
unsafe_allow_html=True
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
apply_custom_styling()
|
| 84 |
-
|
| 85 |
# --- Quantization Configuration ---
|
| 86 |
def get_quantization_config():
|
| 87 |
"""
|
|
@@ -111,10 +44,11 @@ def get_torch_dtype():
|
|
| 111 |
else:
|
| 112 |
return torch.float32 # Keep full precision on CPU
|
| 113 |
|
| 114 |
-
# --- Optimized Model Loading
|
| 115 |
-
@st.cache_resource
|
| 116 |
def load_optimized_models():
|
| 117 |
-
"""Load models with quantization and other optimizations
|
|
|
|
| 118 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 119 |
torch_dtype = get_torch_dtype()
|
| 120 |
quantization_config = get_quantization_config()
|
|
@@ -124,7 +58,7 @@ def load_optimized_models():
|
|
| 124 |
# Model names
|
| 125 |
model_name = "seyonec/PubChem10M_SMILES_BPE_450k"
|
| 126 |
|
| 127 |
-
# Load tokenizer
|
| 128 |
fill_mask_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 129 |
|
| 130 |
# Load model with quantization if available
|
|
@@ -134,6 +68,7 @@ def load_optimized_models():
|
|
| 134 |
|
| 135 |
if quantization_config is not None and torch.cuda.is_available(): # Quantization typically for GPU
|
| 136 |
model_kwargs["quantization_config"] = quantization_config
|
|
|
|
| 137 |
model_kwargs["device_map"] = "auto"
|
| 138 |
elif torch.cuda.is_available():
|
| 139 |
model_kwargs["device_map"] = "auto" # For non-quantized GPU loading
|
|
@@ -141,216 +76,306 @@ def load_optimized_models():
|
|
| 141 |
model_kwargs["device_map"] = None # For CPU
|
| 142 |
|
| 143 |
try:
|
|
|
|
| 144 |
fill_mask_model = AutoModelForMaskedLM.from_pretrained(
|
| 145 |
model_name,
|
| 146 |
**model_kwargs
|
| 147 |
)
|
|
|
|
|
|
|
| 148 |
fill_mask_model.eval()
|
| 149 |
|
|
|
|
|
|
|
| 150 |
pipeline_device = fill_mask_model.device.index if hasattr(fill_mask_model.device, 'type') and fill_mask_model.device.type == "cuda" else -1
|
| 151 |
|
| 152 |
fill_mask_pipeline = pipeline(
|
| 153 |
'fill-mask',
|
| 154 |
model=fill_mask_model,
|
| 155 |
tokenizer=fill_mask_tokenizer,
|
| 156 |
-
device=pipeline_device,
|
|
|
|
| 157 |
)
|
|
|
|
| 158 |
logger.info("Models loaded successfully with optimizations")
|
| 159 |
return fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline
|
|
|
|
| 160 |
except Exception as e:
|
| 161 |
logger.error(f"Error loading optimized models: {e}")
|
|
|
|
| 162 |
logger.info("Falling back to standard model loading...")
|
| 163 |
return load_standard_models(model_name)
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
"""Fallback standard model loading without quantization using Streamlit caching."""
|
| 168 |
fill_mask_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 169 |
fill_mask_model = AutoModelForMaskedLM.from_pretrained(model_name)
|
|
|
|
| 170 |
device_idx = 0 if torch.cuda.is_available() else -1
|
| 171 |
fill_mask_pipeline = pipeline('fill-mask', model=fill_mask_model, tokenizer=fill_mask_tokenizer, device=device_idx)
|
|
|
|
| 172 |
if torch.cuda.is_available():
|
| 173 |
fill_mask_model.to("cuda")
|
| 174 |
-
|
| 175 |
return fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline
|
| 176 |
|
| 177 |
-
#
|
|
|
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
# atom_colors = {
|
| 191 |
-
# 6: (0.8, 0.8, 0.8), # Carbon (light gray)
|
| 192 |
-
# 7: (0.2, 0.5, 1.0), # Nitrogen (blue)
|
| 193 |
-
# 8: (1.0, 0.2, 0.2), # Oxygen (red)
|
| 194 |
-
# 9: (0.2, 0.8, 0.2), # Fluorine (green)
|
| 195 |
-
# 15: (1.0, 0.5, 0.0), # Phosphorus (orange)
|
| 196 |
-
# 16: (1.0, 0.8, 0.0), # Sulfur (yellow)
|
| 197 |
-
# 17: (0.2, 0.7, 0.2), # Chlorine (dark green)
|
| 198 |
-
# 35: (0.5, 0.2, 0.8), # Bromine (purple)
|
| 199 |
-
# 53: (0.8, 0.2, 0.5), # Iodine (pink/magenta)
|
| 200 |
-
# }
|
| 201 |
-
# # Set default atom color
|
| 202 |
-
# drawer.drawOptions().setAtomColor(Chem.rdatomicnumlist.Get): (0.8, 0.8, 0.8) # Default to light gray for unknown atoms
|
| 203 |
-
# for atom_num, color in atom_colors.items():
|
| 204 |
-
# drawer.drawOptions().setAtomColor(atom_num, color)
|
| 205 |
-
|
| 206 |
-
# drawer.drawOptions().bondColor = (0.7, 0.7, 0.7) # Bond color (medium gray)
|
| 207 |
-
# drawer.drawOptions().highlightColour = (0.2, 0.6, 1.0) # Highlight color (blue)
|
| 208 |
-
|
| 209 |
-
drawer.DrawMolecule(mol)
|
| 210 |
-
drawer.FinishDrawing()
|
| 211 |
-
svg = drawer.GetDrawingText()
|
| 212 |
-
return svg
|
| 213 |
-
|
| 214 |
-
def mol_to_sdf(mol):
|
| 215 |
-
"""Converts an RDKit molecule object to an SDF string."""
|
| 216 |
-
if not mol:
|
| 217 |
return None
|
| 218 |
-
# Add hydrogens to the molecule
|
| 219 |
-
mol_with_h = Chem.AddHs(mol)
|
| 220 |
-
|
| 221 |
-
# Generate 3D coordinates using ETKDGv3, a common conformer generation method
|
| 222 |
-
# MaxAttempts is increased for robustness, randomSeed for reproducibility
|
| 223 |
try:
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
-
def
|
| 234 |
"""
|
| 235 |
-
|
| 236 |
-
|
| 237 |
"""
|
| 238 |
-
if not
|
| 239 |
-
|
|
|
|
|
|
|
| 240 |
try:
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
viewer.addModel(mol_sdf, "sdf")
|
| 244 |
-
viewer.setStyle({'stick':{}, 'sphere':{'radius':0.3}}) # Stick and Sphere representation
|
| 245 |
-
viewer.zoomTo()
|
| 246 |
-
html_view = viewer._make_html()
|
| 247 |
-
return html_view
|
| 248 |
except Exception as e:
|
| 249 |
-
|
| 250 |
-
|
|
|
|
| 251 |
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
| 253 |
|
| 254 |
-
|
|
|
|
|
|
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
st.session_state.tokenizer, st.session_state.model, st.session_state.pipeline = load_optimized_models()
|
| 259 |
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
-
|
| 267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
|
| 269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
else:
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
else:
|
| 293 |
-
st.error("Invalid SMILES string. Please enter a valid chemical structure.")
|
| 294 |
-
else:
|
| 295 |
-
st.info("Please enter a SMILES string to view the molecule.")
|
| 296 |
|
| 297 |
with tab2:
|
| 298 |
-
st.
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
"
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
token_str = pred['token_str']
|
| 316 |
-
sequence = pred['sequence']
|
| 317 |
-
score = pred['score']
|
| 318 |
-
|
| 319 |
-
mol = Chem.MolFromSmiles(sequence)
|
| 320 |
-
img_svg = None
|
| 321 |
-
if mol:
|
| 322 |
-
img_svg = mol_to_svg(mol, size=(200,150)) # Smaller image for table
|
| 323 |
-
|
| 324 |
-
prediction_data.append({
|
| 325 |
-
"Predicted Token": token_str,
|
| 326 |
-
"Full SMILES": sequence,
|
| 327 |
-
"Confidence Score": f"{score:.4f}",
|
| 328 |
-
"Structure SVG": img_svg # Store SVG string
|
| 329 |
-
})
|
| 330 |
-
|
| 331 |
-
df_predictions = pd.DataFrame(prediction_data)
|
| 332 |
-
|
| 333 |
-
st.subheader("Predictions:")
|
| 334 |
-
|
| 335 |
-
# Create a version of the dataframe without the SVG for initial display
|
| 336 |
-
display_df = df_predictions.drop(columns=["Structure SVG"])
|
| 337 |
-
st.dataframe(display_df, use_container_width=True, hide_index=True)
|
| 338 |
-
|
| 339 |
-
st.subheader("Predicted Structures:")
|
| 340 |
-
# Determine the number of columns based on the number of predictions, up to a max
|
| 341 |
-
num_cols = min(len(df_predictions), 5) # Display up to 5 images per row
|
| 342 |
-
cols = st.columns(num_cols)
|
| 343 |
-
|
| 344 |
-
for i, row in df_predictions.iterrows():
|
| 345 |
-
with cols[i % num_cols]: # Distribute images into columns
|
| 346 |
-
st.markdown(f"**{row['Predicted Token']}** (Score: {row['Confidence Score']})")
|
| 347 |
-
if row['Structure SVG']:
|
| 348 |
-
st.image(row['Structure SVG'], use_column_width='auto')
|
| 349 |
-
else:
|
| 350 |
-
st.write("*(Invalid SMILES)*")
|
| 351 |
-
|
| 352 |
-
except Exception as e:
|
| 353 |
-
st.error(f"An error occurred during prediction: {e}")
|
| 354 |
-
st.info("Please ensure your masked SMILES is valid and contains `<mask>`.")
|
| 355 |
-
else:
|
| 356 |
-
st.info("Please enter a masked SMILES string (e.g., `C1=CC=CC<mask>C1`).")
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import streamlit as st
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline, BitsAndBytesConfig
|
| 5 |
from rdkit import Chem
|
| 6 |
from rdkit.Chem import Draw, AllChem
|
| 7 |
+
from rdkit.Chem.Draw import MolToImage
|
| 8 |
+
import pandas as pd
|
| 9 |
import io
|
| 10 |
import base64
|
| 11 |
import logging
|
| 12 |
+
import py3Dmol
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Set up logging to monitor quantization effects
|
| 15 |
logging.basicConfig(level=logging.INFO)
|
| 16 |
logger = logging.getLogger(__name__)
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
# --- Quantization Configuration ---
|
| 19 |
def get_quantization_config():
|
| 20 |
"""
|
|
|
|
| 44 |
else:
|
| 45 |
return torch.float32 # Keep full precision on CPU
|
| 46 |
|
| 47 |
+
# --- Optimized Model Loading ---
|
| 48 |
+
@st.cache_resource
|
| 49 |
def load_optimized_models():
|
| 50 |
+
"""Load models with quantization and other optimizations.
|
| 51 |
+
Uses st.cache_resource to avoid reloading models on every rerun."""
|
| 52 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 53 |
torch_dtype = get_torch_dtype()
|
| 54 |
quantization_config = get_quantization_config()
|
|
|
|
| 58 |
# Model names
|
| 59 |
model_name = "seyonec/PubChem10M_SMILES_BPE_450k"
|
| 60 |
|
| 61 |
+
# Load tokenizer (doesn't need quantization)
|
| 62 |
fill_mask_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 63 |
|
| 64 |
# Load model with quantization if available
|
|
|
|
| 68 |
|
| 69 |
if quantization_config is not None and torch.cuda.is_available(): # Quantization typically for GPU
|
| 70 |
model_kwargs["quantization_config"] = quantization_config
|
| 71 |
+
# device_map="auto" is often used with bitsandbytes for automatic distribution
|
| 72 |
model_kwargs["device_map"] = "auto"
|
| 73 |
elif torch.cuda.is_available():
|
| 74 |
model_kwargs["device_map"] = "auto" # For non-quantized GPU loading
|
|
|
|
| 76 |
model_kwargs["device_map"] = None # For CPU
|
| 77 |
|
| 78 |
try:
|
| 79 |
+
# Masked LM Model
|
| 80 |
fill_mask_model = AutoModelForMaskedLM.from_pretrained(
|
| 81 |
model_name,
|
| 82 |
**model_kwargs
|
| 83 |
)
|
| 84 |
+
|
| 85 |
+
# Set model to evaluation mode for inference
|
| 86 |
fill_mask_model.eval()
|
| 87 |
|
| 88 |
+
# Create optimized pipeline
|
| 89 |
+
# Let pipeline infer device from model if possible, or set based on model's device
|
| 90 |
pipeline_device = fill_mask_model.device.index if hasattr(fill_mask_model.device, 'type') and fill_mask_model.device.type == "cuda" else -1
|
| 91 |
|
| 92 |
fill_mask_pipeline = pipeline(
|
| 93 |
'fill-mask',
|
| 94 |
model=fill_mask_model,
|
| 95 |
tokenizer=fill_mask_tokenizer,
|
| 96 |
+
device=pipeline_device, # Use model's device
|
| 97 |
+
# torch_dtype=torch_dtype # Pipeline might infer this or it might conflict
|
| 98 |
)
|
| 99 |
+
|
| 100 |
logger.info("Models loaded successfully with optimizations")
|
| 101 |
return fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline
|
| 102 |
+
|
| 103 |
except Exception as e:
|
| 104 |
logger.error(f"Error loading optimized models: {e}")
|
| 105 |
+
# Fallback to standard loading
|
| 106 |
logger.info("Falling back to standard model loading...")
|
| 107 |
return load_standard_models(model_name)
|
| 108 |
|
| 109 |
+
def load_standard_models(model_name):
|
| 110 |
+
"""Fallback standard model loading without quantization."""
|
|
|
|
| 111 |
fill_mask_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 112 |
fill_mask_model = AutoModelForMaskedLM.from_pretrained(model_name)
|
| 113 |
+
# Determine device for standard loading
|
| 114 |
device_idx = 0 if torch.cuda.is_available() else -1
|
| 115 |
fill_mask_pipeline = pipeline('fill-mask', model=fill_mask_model, tokenizer=fill_mask_tokenizer, device=device_idx)
|
| 116 |
+
|
| 117 |
if torch.cuda.is_available():
|
| 118 |
fill_mask_model.to("cuda")
|
| 119 |
+
|
| 120 |
return fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline
|
| 121 |
|
| 122 |
+
# Load models with optimizations
|
| 123 |
+
fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline = load_optimized_models()
|
| 124 |
|
| 125 |
+
# --- Memory Management Utilities ---
|
| 126 |
+
def clear_gpu_cache():
|
| 127 |
+
"""Clear CUDA cache to free up memory."""
|
| 128 |
+
if torch.cuda.is_available():
|
| 129 |
+
torch.cuda.empty_cache()
|
| 130 |
+
|
| 131 |
+
# --- Helper Functions from Notebook (adapted) ---
|
| 132 |
+
def get_mol(smiles):
|
| 133 |
+
"""Converts SMILES to RDKit Mol object and Kekulizes it."""
|
| 134 |
+
mol = Chem.MolFromSmiles(smiles)
|
| 135 |
+
if mol is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
try:
|
| 138 |
+
Chem.Kekulize(mol)
|
| 139 |
+
except: # Kekulization can fail for some structures
|
| 140 |
+
pass
|
| 141 |
+
return mol
|
| 142 |
+
|
| 143 |
+
def find_matches_one(mol, submol_smarts):
|
| 144 |
+
"""Finds all matching atoms for a SMARTS pattern in a molecule."""
|
| 145 |
+
if not mol or not submol_smarts:
|
| 146 |
+
return []
|
| 147 |
+
submol = Chem.MolFromSmarts(submol_smarts)
|
| 148 |
+
if not submol:
|
| 149 |
+
return []
|
| 150 |
+
matches = mol.GetSubstructMatches(submol)
|
| 151 |
+
return matches
|
| 152 |
+
|
| 153 |
+
def get_image_with_highlight(mol, atomset=None, size=(300, 300)):
|
| 154 |
+
"""Draws molecule with optional atom highlighting."""
|
| 155 |
+
if mol is None:
|
| 156 |
+
return None
|
| 157 |
+
highlight_color = (0, 1, 0, 0.5) # Green with some transparency
|
| 158 |
+
|
| 159 |
+
# Ensure atomset contains integers if not None or empty
|
| 160 |
+
valid_atomset = []
|
| 161 |
+
if atomset:
|
| 162 |
+
try:
|
| 163 |
+
valid_atomset = [int(a) for a in atomset]
|
| 164 |
+
except ValueError:
|
| 165 |
+
logger.warning(f"Invalid atom in atomset: {atomset}. Proceeding without highlighting problematic atoms.")
|
| 166 |
+
valid_atomset = [int(a) for a in atomset if str(a).isdigit()] # Filter out non-integers
|
| 167 |
+
|
| 168 |
+
img = MolToImage(mol, size=size, fitImage=True,
|
| 169 |
+
highlightAtoms=valid_atomset if valid_atomset else [],
|
| 170 |
+
highlightAtomColors={i: highlight_color for i in valid_atomset} if valid_atomset else {})
|
| 171 |
+
return img
|
| 172 |
+
|
| 173 |
+
def mol_to_sdf_string(mol):
|
| 174 |
+
"""Converts an RDKit Mol object to an SDF string."""
|
| 175 |
+
if mol is None:
|
| 176 |
return None
|
| 177 |
+
# Add 3D coordinates if not present
|
| 178 |
+
AllChem.EmbedMolecule(mol, AllChem.ETKDG())
|
| 179 |
+
AllChem.UFFOptimizeMolecule(mol)
|
| 180 |
+
return Chem.MolToMolBlock(mol)
|
| 181 |
+
|
| 182 |
+
def render_mol_3d(sdf_string, width=300, height=300):
|
| 183 |
+
"""Renders a 3D molecule using py3Dmol."""
|
| 184 |
+
if sdf_string is None:
|
| 185 |
+
return ""
|
| 186 |
+
|
| 187 |
+
viewer = py3Dmol.view(width=width, height=height)
|
| 188 |
+
viewer.addModel(sdf_string, 'sdf')
|
| 189 |
+
viewer.setStyle({'stick':{}}) # Display as sticks
|
| 190 |
+
viewer.zoomTo()
|
| 191 |
+
# Embed the viewer HTML into Streamlit
|
| 192 |
+
return viewer.to_html()
|
| 193 |
+
|
| 194 |
+
# --- Streamlit Interface Functions ---
|
| 195 |
|
| 196 |
+
def predict_and_visualize_masked_smiles(smiles_mask, substructure_smarts_highlight="CC=CC"):
|
| 197 |
"""
|
| 198 |
+
Predicts masked tokens in a SMILES string, shows scores, and visualizes molecules.
|
| 199 |
+
Returns 5 image paths and a status message.
|
| 200 |
"""
|
| 201 |
+
if fill_mask_tokenizer.mask_token not in smiles_mask:
|
| 202 |
+
st.error("Error: Input SMILES must contain a mask token (e.g., <mask>).")
|
| 203 |
+
return pd.DataFrame(), [None]*5, [None]*5, "Error: Input SMILES must contain a mask token (e.g., <mask>)."
|
| 204 |
+
|
| 205 |
try:
|
| 206 |
+
with torch.no_grad():
|
| 207 |
+
predictions = fill_mask_pipeline(smiles_mask, top_k=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
except Exception as e:
|
| 209 |
+
clear_gpu_cache()
|
| 210 |
+
st.error(f"Error during prediction: {str(e)}")
|
| 211 |
+
return pd.DataFrame(), [None]*5, [None]*5, f"Error during prediction: {str(e)}"
|
| 212 |
|
| 213 |
+
results_data = []
|
| 214 |
+
image_2d_list = []
|
| 215 |
+
image_3d_list = []
|
| 216 |
+
valid_predictions_count = 0
|
| 217 |
|
| 218 |
+
for pred in predictions:
|
| 219 |
+
if valid_predictions_count >= 5:
|
| 220 |
+
break
|
| 221 |
|
| 222 |
+
predicted_smiles = pred['sequence']
|
| 223 |
+
score = pred['score']
|
|
|
|
| 224 |
|
| 225 |
+
mol = get_mol(predicted_smiles)
|
| 226 |
+
if mol:
|
| 227 |
+
results_data.append({"Predicted SMILES": predicted_smiles, "Score": f"{score:.4f}"})
|
| 228 |
|
| 229 |
+
atom_matches_indices = []
|
| 230 |
+
if substructure_smarts_highlight:
|
| 231 |
+
matches = find_matches_one(mol, substructure_smarts_highlight)
|
| 232 |
+
if matches:
|
| 233 |
+
atom_matches_indices = list(matches[0]) # Highlight first match
|
| 234 |
|
| 235 |
+
img_2d = get_image_with_highlight(mol, atomset=atom_matches_indices)
|
| 236 |
+
image_2d_list.append(img_2d)
|
| 237 |
+
|
| 238 |
+
# For 3D, we need an SDF string
|
| 239 |
+
sdf_string = mol_to_sdf_string(mol)
|
| 240 |
+
img_3d_html = render_mol_3d(sdf_string, width=300, height=300)
|
| 241 |
+
image_3d_list.append(img_3d_html)
|
| 242 |
+
|
| 243 |
+
valid_predictions_count += 1
|
| 244 |
+
|
| 245 |
+
# Pad image lists if fewer than 5 valid predictions
|
| 246 |
+
while len(image_2d_list) < 5:
|
| 247 |
+
image_2d_list.append(None)
|
| 248 |
+
image_3d_list.append(None)
|
| 249 |
+
|
| 250 |
+
df_results = pd.DataFrame(results_data)
|
| 251 |
+
|
| 252 |
+
clear_gpu_cache()
|
| 253 |
+
|
| 254 |
+
status_message = "Prediction successful." if valid_predictions_count > 0 else "No valid molecules found for top predictions."
|
| 255 |
+
return df_results, image_2d_list, image_3d_list, status_message
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def display_molecule_with_3d(smiles_string):
|
| 259 |
+
"""
|
| 260 |
+
Displays a 2D image and 3D visualization of a molecule from its SMILES string.
|
| 261 |
+
"""
|
| 262 |
+
if not smiles_string:
|
| 263 |
+
return None, None, "Please enter a SMILES string."
|
| 264 |
+
mol = get_mol(smiles_string)
|
| 265 |
+
if mol is None:
|
| 266 |
+
return None, None, "Invalid SMILES string."
|
| 267 |
+
|
| 268 |
+
img_2d = MolToImage(mol, size=(400, 400), fitImage=True)
|
| 269 |
+
|
| 270 |
+
sdf_string = mol_to_sdf_string(mol)
|
| 271 |
+
img_3d_html = render_mol_3d(sdf_string, width=400, height=400)
|
| 272 |
|
| 273 |
+
return img_2d, img_3d_html, "Molecule displayed."
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
# --- Streamlit UI Definition ---
|
| 277 |
+
|
| 278 |
+
# Set wide mode and background color
|
| 279 |
+
st.set_page_config(layout="wide")
|
| 280 |
+
|
| 281 |
+
st.markdown(
|
| 282 |
+
"""
|
| 283 |
+
<style>
|
| 284 |
+
.stApp {
|
| 285 |
+
background-color: rgb(28,28,28);
|
| 286 |
+
color: white; /* Ensure text is visible on dark background */
|
| 287 |
+
}
|
| 288 |
+
.stDataFrame {
|
| 289 |
+
color: black; /* Default DataFrame text color */
|
| 290 |
+
}
|
| 291 |
+
h1, h2, h3, h4, h5, h6, .stMarkdown {
|
| 292 |
+
color: white;
|
| 293 |
+
}
|
| 294 |
+
.css-1d391kg, .css-1dp5dn1 { /* Target Streamlit's main content and sidebar */
|
| 295 |
+
color: white;
|
| 296 |
+
}
|
| 297 |
+
.streamlit-expanderContent {
|
| 298 |
+
background-color: rgb(40,40,40); /* Slightly lighter background for expanders */
|
| 299 |
+
border-radius: 10px;
|
| 300 |
+
padding: 10px;
|
| 301 |
+
}
|
| 302 |
+
/* Style for text inputs and buttons */
|
| 303 |
+
.stTextInput>div>div>input {
|
| 304 |
+
background-color: rgb(50,50,50);
|
| 305 |
+
color: white;
|
| 306 |
+
border-radius: 5px;
|
| 307 |
+
border: 1px solid rgb(70,70,70);
|
| 308 |
+
}
|
| 309 |
+
.stButton>button {
|
| 310 |
+
background-color: rgb(0,128,255); /* Blue button */
|
| 311 |
+
color: white;
|
| 312 |
+
border-radius: 8px;
|
| 313 |
+
padding: 10px 20px;
|
| 314 |
+
border: none;
|
| 315 |
+
transition: background-color 0.3s ease;
|
| 316 |
+
}
|
| 317 |
+
.stButton>button:hover {
|
| 318 |
+
background-color: rgb(0,100,200);
|
| 319 |
+
}
|
| 320 |
+
</style>
|
| 321 |
+
""",
|
| 322 |
+
unsafe_allow_html=True
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
st.title("ChemBERTa SMILES Utilities Dashboard")
|
| 327 |
+
|
| 328 |
+
tab1, tab2 = st.tabs(["Masked SMILES Prediction", "Molecule Viewer"])
|
| 329 |
+
|
| 330 |
+
with tab1:
|
| 331 |
+
st.markdown("Enter a SMILES string with a `<mask>` token (e.g., `C1=CC=CC<mask>C1`) to predict possible completions.")
|
| 332 |
|
| 333 |
+
col1, col2 = st.columns([2, 1])
|
| 334 |
+
with col1:
|
| 335 |
+
smiles_input_masked = st.text_input("SMILES String with Mask", value="C1=CC=CC<mask>C1")
|
| 336 |
+
with col2:
|
| 337 |
+
substructure_input = st.text_input("Substructure to Highlight (SMARTS)", value="C=C")
|
| 338 |
+
|
| 339 |
+
if st.button("Predict and Visualize", key="predict_button"):
|
| 340 |
+
with st.spinner("Predicting and visualizing..."):
|
| 341 |
+
df_predictions, img_2d_list, img_3d_list, status_msg = predict_and_visualize_masked_smiles(
|
| 342 |
+
smiles_input_masked, substructure_input
|
| 343 |
+
)
|
| 344 |
+
st.write(status_msg)
|
| 345 |
+
|
| 346 |
+
if not df_predictions.empty:
|
| 347 |
+
st.subheader("Top Predictions & Scores")
|
| 348 |
+
st.dataframe(df_predictions, use_container_width=True)
|
| 349 |
+
|
| 350 |
+
st.subheader("Predicted Molecule Visualizations (Top 5 Valid)")
|
| 351 |
+
for i in range(5):
|
| 352 |
+
if img_2d_list[i] is not None:
|
| 353 |
+
st.markdown(f"**Prediction {i+1}**")
|
| 354 |
+
cols_img = st.columns(2)
|
| 355 |
+
with cols_img[0]:
|
| 356 |
+
st.image(img_2d_list[i], caption=f"2D Prediction {i+1}", use_column_width=True)
|
| 357 |
+
with cols_img[1]:
|
| 358 |
+
st.components.v1.html(img_3d_list[i], height=300)
|
| 359 |
else:
|
| 360 |
+
if i < len(df_predictions): # Only show 'No visualization' if there was a prediction attempt
|
| 361 |
+
st.markdown(f"**Prediction {i+1}**: No visualization available (invalid SMILES or error).")
|
| 362 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
|
| 364 |
with tab2:
|
| 365 |
+
st.markdown("Enter a SMILES string to display its 2D and 3D structure.")
|
| 366 |
+
smiles_input_viewer = st.text_input("SMILES String", value="C1=CC=CC=C1", key="viewer_smiles_input")
|
| 367 |
+
|
| 368 |
+
if st.button("View Molecule", key="view_button"):
|
| 369 |
+
with st.spinner("Displaying molecule..."):
|
| 370 |
+
img_2d_viewer, img_3d_viewer_html, status_viewer_msg = display_molecule_with_3d(smiles_input_viewer)
|
| 371 |
+
st.write(status_viewer_msg)
|
| 372 |
+
|
| 373 |
+
if img_2d_viewer is not None:
|
| 374 |
+
cols_viewer = st.columns(2)
|
| 375 |
+
with cols_viewer[0]:
|
| 376 |
+
st.image(img_2d_viewer, caption="2D Molecule Structure", use_column_width=True)
|
| 377 |
+
with cols_viewer[1]:
|
| 378 |
+
st.components.v1.html(img_3d_viewer_html, height=400)
|
| 379 |
+
else:
|
| 380 |
+
st.warning("Could not display molecule. Please check the SMILES string.")
|
| 381 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|