Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,103 @@
|
|
1 |
# app.py
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
-
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline, BitsAndBytesConfig
|
5 |
from rdkit import Chem
|
6 |
from rdkit.Chem import Draw, rdFMCS
|
7 |
from rdkit.Chem.Draw import MolToImage
|
8 |
# PIL is imported as Image by rdkit.Chem.Draw.MolToImage, but explicit import is good practice if used directly.
|
9 |
# from PIL import Image
|
10 |
import pandas as pd
|
11 |
-
|
|
|
|
|
|
|
12 |
import io
|
13 |
import base64
|
14 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# Model names
|
16 |
model_name = "seyonec/PubChem10M_SMILES_BPE_450k"
|
17 |
|
18 |
-
# Load
|
19 |
fill_mask_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
20 |
|
21 |
-
|
22 |
-
# Load model with quantization if available
|
23 |
model_kwargs = {
|
24 |
"torch_dtype": torch_dtype,
|
25 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
**model_kwargs
|
27 |
)
|
28 |
|
29 |
-
#
|
30 |
-
|
|
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Create optimized pipeline
|
34 |
# Let pipeline infer device from model if possible, or set based on model's device
|
@@ -38,38 +107,283 @@ import logging
|
|
38 |
fill_mask_pipeline = pipeline(
|
39 |
'fill-mask',
|
40 |
model=fill_mask_model,
|
|
|
|
|
|
|
41 |
)
|
42 |
|
43 |
logger.info("Models loaded successfully with optimizations")
|
44 |
-
return fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline
|
45 |
|
46 |
except Exception as e:
|
47 |
logger.error(f"Error loading optimized models: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
device_idx = 0 if torch.cuda.is_available() else -1
|
49 |
fill_mask_pipeline = pipeline('fill-mask', model=fill_mask_model, tokenizer=fill_mask_tokenizer, device=device_idx)
|
50 |
|
51 |
-
|
52 |
-
|
53 |
|
54 |
if torch.cuda.is_available():
|
55 |
fill_mask_model.to("cuda")
|
|
|
56 |
|
57 |
-
|
58 |
-
return fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline
|
59 |
|
60 |
# Load models with optimizations
|
61 |
-
fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline = load_optimized_models()
|
62 |
|
63 |
# --- Memory Management Utilities ---
|
64 |
def clear_gpu_cache():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
# Unpack image_list into individual image outputs + df_results + status_message
|
66 |
return df_results, image_list[0], image_list[1], image_list[2], image_list[3], image_list[4], status_message
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
def display_molecule_image(smiles_string):
|
69 |
"""
|
70 |
Displays a 2D image of a molecule from its SMILES string.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
outputs=[predictions_table, img_out_1, img_out_2, img_out_3, img_out_4, img_out_5, status_masked]
|
72 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
with gr.Tab("Molecule Viewer"):
|
74 |
gr.Markdown("Enter a SMILES string to display its 2D structure.")
|
75 |
-
smiles_input_viewer = gr.Textbox(label="SMILES String", value="C1=CC=CC=C1")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# app.py
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline, RobertaModel, RobertaTokenizer, BitsAndBytesConfig
|
5 |
from rdkit import Chem
|
6 |
from rdkit.Chem import Draw, rdFMCS
|
7 |
from rdkit.Chem.Draw import MolToImage
|
8 |
# PIL is imported as Image by rdkit.Chem.Draw.MolToImage, but explicit import is good practice if used directly.
|
9 |
# from PIL import Image
|
10 |
import pandas as pd
|
11 |
+
from bertviz import head_view # For potential future use or if other parts rely on it
|
12 |
+
from bertviz import neuron_view as neuron_view_function # Specific import for neuron_view function
|
13 |
+
# IPython.core.display.HTML is generally for notebooks. Gradio's gr.HTML handles HTML strings directly.
|
14 |
+
# from IPython.core.display import HTML
|
15 |
import io
|
16 |
import base64
|
17 |
import logging
|
18 |
+
|
19 |
+
# Set up logging to monitor quantization effects
|
20 |
+
logging.basicConfig(level=logging.INFO)
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
# --- Quantization Configuration ---
|
24 |
+
def get_quantization_config():
|
25 |
+
"""
|
26 |
+
Configure 8-bit quantization for model optimization.
|
27 |
+
Falls back gracefully if bitsandbytes is not available.
|
28 |
+
"""
|
29 |
+
try:
|
30 |
+
# 8-bit quantization configuration - good balance of speed and quality
|
31 |
+
quantization_config = BitsAndBytesConfig(
|
32 |
+
load_in_8bit=True,
|
33 |
+
bnb_8bit_compute_dtype=torch.float16,
|
34 |
+
bnb_8bit_use_double_quant=True, # Nested quantization for better compression
|
35 |
+
)
|
36 |
+
logger.info("8-bit quantization configuration loaded successfully")
|
37 |
+
return quantization_config
|
38 |
+
except ImportError:
|
39 |
+
logger.warning("bitsandbytes not available, falling back to standard loading")
|
40 |
+
return None
|
41 |
+
except Exception as e:
|
42 |
+
logger.warning(f"Quantization setup failed: {e}, using standard loading")
|
43 |
+
return None
|
44 |
+
|
45 |
+
def get_torch_dtype():
|
46 |
+
"""Get appropriate torch dtype based on available hardware."""
|
47 |
+
if torch.cuda.is_available():
|
48 |
+
return torch.float16 # Use half precision on GPU
|
49 |
+
else:
|
50 |
+
return torch.float32 # Keep full precision on CPU
|
51 |
+
|
52 |
+
# --- Optimized Model Loading ---
|
53 |
+
def load_optimized_models():
|
54 |
+
"""Load models with quantization and other optimizations."""
|
55 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
56 |
+
torch_dtype = get_torch_dtype()
|
57 |
+
quantization_config = get_quantization_config()
|
58 |
+
|
59 |
+
logger.info(f"Loading models on device: {device} with dtype: {torch_dtype}")
|
60 |
+
|
61 |
# Model names
|
62 |
model_name = "seyonec/PubChem10M_SMILES_BPE_450k"
|
63 |
|
64 |
+
# Load tokenizers (these don't need quantization)
|
65 |
fill_mask_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
66 |
+
attention_tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
67 |
|
68 |
+
# Load models with quantization if available
|
|
|
69 |
model_kwargs = {
|
70 |
"torch_dtype": torch_dtype,
|
71 |
}
|
72 |
+
|
73 |
+
if quantization_config is not None and torch.cuda.is_available(): # Quantization typically for GPU
|
74 |
+
model_kwargs["quantization_config"] = quantization_config
|
75 |
+
# device_map="auto" is often used with bitsandbytes for automatic distribution
|
76 |
+
model_kwargs["device_map"] = "auto"
|
77 |
+
elif torch.cuda.is_available():
|
78 |
+
model_kwargs["device_map"] = "auto" # For non-quantized GPU loading
|
79 |
+
else:
|
80 |
+
model_kwargs["device_map"] = None # For CPU
|
81 |
+
|
82 |
+
try:
|
83 |
+
# Masked LM Model
|
84 |
+
fill_mask_model = AutoModelForMaskedLM.from_pretrained(
|
85 |
+
model_name,
|
86 |
**model_kwargs
|
87 |
)
|
88 |
|
89 |
+
# RoBERTa model for attention
|
90 |
+
attention_model_kwargs = model_kwargs.copy()
|
91 |
+
attention_model_kwargs["output_attentions"] = True
|
92 |
|
93 |
+
attention_model = RobertaModel.from_pretrained(
|
94 |
+
model_name,
|
95 |
+
**attention_model_kwargs
|
96 |
+
)
|
97 |
+
|
98 |
+
# Set models to evaluation mode for inference
|
99 |
+
fill_mask_model.eval()
|
100 |
+
attention_model.eval()
|
101 |
|
102 |
# Create optimized pipeline
|
103 |
# Let pipeline infer device from model if possible, or set based on model's device
|
|
|
107 |
fill_mask_pipeline = pipeline(
|
108 |
'fill-mask',
|
109 |
model=fill_mask_model,
|
110 |
+
tokenizer=fill_mask_tokenizer,
|
111 |
+
device=pipeline_device, # Use model's device
|
112 |
+
# torch_dtype=torch_dtype # Pipeline might infer this or it might conflict
|
113 |
)
|
114 |
|
115 |
logger.info("Models loaded successfully with optimizations")
|
116 |
+
return fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline, attention_model, attention_tokenizer
|
117 |
|
118 |
except Exception as e:
|
119 |
logger.error(f"Error loading optimized models: {e}")
|
120 |
+
# Fallback to standard loading
|
121 |
+
logger.info("Falling back to standard model loading...")
|
122 |
+
return load_standard_models(model_name)
|
123 |
+
|
124 |
+
def load_standard_models(model_name):
|
125 |
+
"""Fallback standard model loading without quantization."""
|
126 |
+
fill_mask_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
127 |
+
fill_mask_model = AutoModelForMaskedLM.from_pretrained(model_name)
|
128 |
+
# Determine device for standard loading
|
129 |
device_idx = 0 if torch.cuda.is_available() else -1
|
130 |
fill_mask_pipeline = pipeline('fill-mask', model=fill_mask_model, tokenizer=fill_mask_tokenizer, device=device_idx)
|
131 |
|
132 |
+
attention_model = RobertaModel.from_pretrained(model_name, output_attentions=True)
|
133 |
+
attention_tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
134 |
|
135 |
if torch.cuda.is_available():
|
136 |
fill_mask_model.to("cuda")
|
137 |
+
attention_model.to("cuda")
|
138 |
|
139 |
+
return fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline, attention_model, attention_tokenizer
|
|
|
140 |
|
141 |
# Load models with optimizations
|
142 |
+
fill_mask_tokenizer, fill_mask_model, fill_mask_pipeline, attention_model, attention_tokenizer = load_optimized_models()
|
143 |
|
144 |
# --- Memory Management Utilities ---
|
145 |
def clear_gpu_cache():
|
146 |
+
"""Clear CUDA cache to free up memory."""
|
147 |
+
if torch.cuda.is_available():
|
148 |
+
torch.cuda.empty_cache()
|
149 |
+
|
150 |
+
# --- Helper Functions from Notebook (adapted) ---
|
151 |
+
def get_mol(smiles):
|
152 |
+
"""Converts SMILES to RDKit Mol object and Kekulizes it."""
|
153 |
+
mol = Chem.MolFromSmiles(smiles)
|
154 |
+
if mol is None:
|
155 |
+
return None
|
156 |
+
try:
|
157 |
+
Chem.Kekulize(mol)
|
158 |
+
except: # Kekulization can fail for some structures
|
159 |
+
pass
|
160 |
+
return mol
|
161 |
+
|
162 |
+
def find_matches_one(mol, submol_smarts):
|
163 |
+
"""Finds all matching atoms for a SMARTS pattern in a molecule."""
|
164 |
+
if not mol or not submol_smarts:
|
165 |
+
return []
|
166 |
+
submol = Chem.MolFromSmarts(submol_smarts)
|
167 |
+
if not submol:
|
168 |
+
return []
|
169 |
+
matches = mol.GetSubstructMatches(submol)
|
170 |
+
return matches
|
171 |
+
|
172 |
+
def get_image_with_highlight(mol, atomset=None, size=(300, 300)):
|
173 |
+
"""Draws molecule with optional atom highlighting."""
|
174 |
+
if mol is None:
|
175 |
+
return None
|
176 |
+
highlight_color = (0, 1, 0, 0.5) # Green with some transparency
|
177 |
+
|
178 |
+
# Ensure atomset contains integers if not None or empty
|
179 |
+
valid_atomset = []
|
180 |
+
if atomset:
|
181 |
+
try:
|
182 |
+
valid_atomset = [int(a) for a in atomset]
|
183 |
+
except ValueError:
|
184 |
+
logger.warning(f"Invalid atom in atomset: {atomset}. Proceeding without highlighting problematic atoms.")
|
185 |
+
valid_atomset = [int(a) for a in atomset if str(a).isdigit()] # Filter out non-integers
|
186 |
+
|
187 |
+
img = MolToImage(mol, size=size, fitImage=True,
|
188 |
+
highlightAtoms=valid_atomset if valid_atomset else [],
|
189 |
+
highlightAtomColors={i: highlight_color for i in valid_atomset} if valid_atomset else {})
|
190 |
+
return img
|
191 |
+
|
192 |
+
# --- Optimized Gradio Interface Functions ---
|
193 |
+
|
194 |
+
def predict_and_visualize_masked_smiles(smiles_mask, substructure_smarts_highlight="CC=CC"):
|
195 |
+
"""
|
196 |
+
Predicts masked tokens in a SMILES string, shows scores, and visualizes molecules.
|
197 |
+
Optimized with memory management. Returns 7 items for Gradio outputs.
|
198 |
+
"""
|
199 |
+
if fill_mask_tokenizer.mask_token not in smiles_mask:
|
200 |
+
# Return 7 items for the 7 output components
|
201 |
+
return pd.DataFrame(), None, None, None, None, None, "Error: Input SMILES must contain a mask token (e.g., <mask>)."
|
202 |
+
|
203 |
+
try:
|
204 |
+
# Use torch.no_grad() for inference to save memory
|
205 |
+
with torch.no_grad():
|
206 |
+
predictions = fill_mask_pipeline(smiles_mask, top_k=10) # Get more to filter for valid ones
|
207 |
+
except Exception as e:
|
208 |
+
clear_gpu_cache() # Clear cache on error
|
209 |
+
# Return 7 items
|
210 |
+
return pd.DataFrame(), None, None, None, None, None, f"Error during prediction: {str(e)}"
|
211 |
+
|
212 |
+
results_data = []
|
213 |
+
image_list = []
|
214 |
+
valid_predictions_count = 0
|
215 |
+
|
216 |
+
for pred in predictions:
|
217 |
+
if valid_predictions_count >= 5:
|
218 |
+
break
|
219 |
+
|
220 |
+
predicted_smiles = pred['sequence']
|
221 |
+
score = pred['score']
|
222 |
+
|
223 |
+
mol = get_mol(predicted_smiles)
|
224 |
+
if mol:
|
225 |
+
results_data.append({"Predicted SMILES": predicted_smiles, "Score": f"{score:.4f}"})
|
226 |
+
|
227 |
+
atom_matches_indices = []
|
228 |
+
if substructure_smarts_highlight:
|
229 |
+
matches = find_matches_one(mol, substructure_smarts_highlight)
|
230 |
+
if matches:
|
231 |
+
atom_matches_indices = list(matches[0]) # Highlight first match
|
232 |
+
|
233 |
+
img = get_image_with_highlight(mol, atomset=atom_matches_indices)
|
234 |
+
image_list.append(img)
|
235 |
+
valid_predictions_count += 1
|
236 |
+
|
237 |
+
# Pad image_list if fewer than 5 valid predictions
|
238 |
+
while len(image_list) < 5:
|
239 |
+
image_list.append(None)
|
240 |
+
|
241 |
+
df_results = pd.DataFrame(results_data)
|
242 |
+
|
243 |
+
# Clear cache after inference
|
244 |
+
clear_gpu_cache()
|
245 |
+
|
246 |
+
status_message = "Prediction successful." if valid_predictions_count > 0 else "No valid molecules found for top predictions."
|
247 |
+
|
248 |
# Unpack image_list into individual image outputs + df_results + status_message
|
249 |
return df_results, image_list[0], image_list[1], image_list[2], image_list[3], image_list[4], status_message
|
250 |
|
251 |
+
|
252 |
+
def visualize_attention_bertviz(sentence_a, sentence_b):
|
253 |
+
"""
|
254 |
+
Generates and displays BertViz neuron-by-neuron attention view as HTML.
|
255 |
+
Optimized with memory management and mixed precision.
|
256 |
+
"""
|
257 |
+
if not sentence_a or not sentence_b:
|
258 |
+
return "<p style='color:red;'>Please provide two SMILES strings.</p>"
|
259 |
+
try:
|
260 |
+
inputs = attention_tokenizer.encode_plus(sentence_a, sentence_b, return_tensors='pt', add_special_tokens=True)
|
261 |
+
input_ids = inputs['input_ids']
|
262 |
+
|
263 |
+
# Move to appropriate device if using GPU
|
264 |
+
if torch.cuda.is_available() and hasattr(attention_model, 'device'):
|
265 |
+
input_ids = input_ids.to(attention_model.device)
|
266 |
+
|
267 |
+
# Ensure model is in eval mode and use no_grad for inference
|
268 |
+
attention_model.eval()
|
269 |
+
with torch.no_grad():
|
270 |
+
# Use autocast for mixed precision if on CUDA
|
271 |
+
if torch.cuda.is_available() and hasattr(torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'): # Check for amp
|
272 |
+
with torch.cuda.amp.autocast(dtype=torch.float16 if get_torch_dtype() == torch.float16 else None):
|
273 |
+
attention_outputs = attention_model(input_ids)
|
274 |
+
else:
|
275 |
+
attention_outputs = attention_model(input_ids)
|
276 |
+
|
277 |
+
attention = attention_outputs[-1] # Last item in the tuple is attentions
|
278 |
+
input_id_list = input_ids[0].tolist()
|
279 |
+
tokens = attention_tokenizer.convert_ids_to_tokens(input_id_list)
|
280 |
+
|
281 |
+
# Using the specifically imported neuron_view_function
|
282 |
+
html_object = neuron_view_function(attention, tokens)
|
283 |
+
|
284 |
+
# Extract HTML string from the IPython.core.display.HTML object
|
285 |
+
html_string = html_object.data # .data should provide the HTML string
|
286 |
+
|
287 |
+
# Add D3 and jQuery CDN links to the HTML string for better rendering in Gradio
|
288 |
+
html_with_deps = f"""
|
289 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
|
290 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/5.16.0/d3.min.js"></script>
|
291 |
+
{html_string}
|
292 |
+
"""
|
293 |
+
|
294 |
+
# Clear cache after attention computation
|
295 |
+
clear_gpu_cache()
|
296 |
+
|
297 |
+
return html_with_deps
|
298 |
+
except Exception as e:
|
299 |
+
clear_gpu_cache() # Clear cache on error
|
300 |
+
logger.error(f"Error in visualize_attention_bertviz: {e}", exc_info=True)
|
301 |
+
return f"<p style='color:red;'>Error generating attention visualization: {str(e)}</p>"
|
302 |
+
|
303 |
def display_molecule_image(smiles_string):
|
304 |
"""
|
305 |
Displays a 2D image of a molecule from its SMILES string.
|
306 |
+
"""
|
307 |
+
if not smiles_string:
|
308 |
+
return None, "Please enter a SMILES string."
|
309 |
+
mol = get_mol(smiles_string)
|
310 |
+
if mol is None:
|
311 |
+
return None, "Invalid SMILES string."
|
312 |
+
img = MolToImage(mol, size=(400, 400), fitImage=True)
|
313 |
+
return img, "Molecule displayed."
|
314 |
+
|
315 |
+
# --- Gradio Interface Definition ---
|
316 |
+
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
317 |
+
gr.Markdown("# ChemBERTa SMILES Utilities Dashboard")
|
318 |
+
|
319 |
+
with gr.Tab("Masked SMILES Prediction"):
|
320 |
+
gr.Markdown("Enter a SMILES string with a `<mask>` token (e.g., `C1=CC=CC<mask>C1`) to predict possible completions.")
|
321 |
+
with gr.Row():
|
322 |
+
smiles_input_masked = gr.Textbox(label="SMILES String with Mask", value="C1=CC=CC<mask>C1")
|
323 |
+
substructure_input = gr.Textbox(label="Substructure to Highlight (SMARTS)", value="C=C")
|
324 |
+
predict_button_masked = gr.Button("Predict and Visualize")
|
325 |
+
|
326 |
+
status_masked = gr.Textbox(label="Status", interactive=False)
|
327 |
+
predictions_table = gr.DataFrame(label="Top Predictions & Scores")
|
328 |
+
|
329 |
+
gr.Markdown("### Predicted Molecule Visualizations (Top 5 Valid)")
|
330 |
+
with gr.Row():
|
331 |
+
img_out_1 = gr.Image(label="Prediction 1", type="pil", interactive=False)
|
332 |
+
img_out_2 = gr.Image(label="Prediction 2", type="pil", interactive=False)
|
333 |
+
img_out_3 = gr.Image(label="Prediction 3", type="pil", interactive=False)
|
334 |
+
img_out_4 = gr.Image(label="Prediction 4", type="pil", interactive=False)
|
335 |
+
img_out_5 = gr.Image(label="Prediction 5", type="pil", interactive=False)
|
336 |
+
|
337 |
+
# Automatically populate on load for the default example
|
338 |
+
demo.load(
|
339 |
+
lambda: predict_and_visualize_masked_smiles("C1=CC=CC<mask>C1", "C=C"),
|
340 |
+
inputs=None,
|
341 |
+
outputs=[predictions_table, img_out_1, img_out_2, img_out_3, img_out_4, img_out_5, status_masked]
|
342 |
+
)
|
343 |
+
predict_button_masked.click(
|
344 |
+
predict_and_visualize_masked_smiles,
|
345 |
+
inputs=[smiles_input_masked, substructure_input],
|
346 |
outputs=[predictions_table, img_out_1, img_out_2, img_out_3, img_out_4, img_out_5, status_masked]
|
347 |
)
|
348 |
+
|
349 |
+
with gr.Tab("Attention Visualization"):
|
350 |
+
gr.Markdown("Enter two SMILES strings to visualize **neuron-by-neuron attention** between them using BertViz. This may take a moment to render.")
|
351 |
+
with gr.Row():
|
352 |
+
smiles_a_input_attn = gr.Textbox(label="SMILES String A", value="CCCCC[C@@H](Br)CC")
|
353 |
+
smiles_b_input_attn = gr.Textbox(label="SMILES String B", value="CCCCC[C@H](Br)CC")
|
354 |
+
visualize_button_attn = gr.Button("Visualize Attention")
|
355 |
+
attention_html_output = gr.HTML(label="Attention Neuron View") # Changed label for clarity
|
356 |
+
|
357 |
+
# Automatically populate on load for the default example
|
358 |
+
demo.load(
|
359 |
+
lambda: visualize_attention_bertviz("CCCCC[C@@H](Br)CC", "CCCCC[C@H](Br)CC"),
|
360 |
+
inputs=None,
|
361 |
+
outputs=[attention_html_output]
|
362 |
+
)
|
363 |
+
visualize_button_attn.click(
|
364 |
+
visualize_attention_bertviz,
|
365 |
+
inputs=[smiles_a_input_attn, smiles_b_input_attn],
|
366 |
+
outputs=[attention_html_output]
|
367 |
+
)
|
368 |
+
|
369 |
with gr.Tab("Molecule Viewer"):
|
370 |
gr.Markdown("Enter a SMILES string to display its 2D structure.")
|
371 |
+
smiles_input_viewer = gr.Textbox(label="SMILES String", value="C1=CC=CC=C1")
|
372 |
+
view_button_molecule = gr.Button("View Molecule")
|
373 |
+
status_viewer = gr.Textbox(label="Status", interactive=False)
|
374 |
+
molecule_image_output = gr.Image(label="Molecule Structure", type="pil", interactive=False)
|
375 |
+
|
376 |
+
# Automatically populate on load for the default example
|
377 |
+
demo.load(
|
378 |
+
lambda: display_molecule_image("C1=CC=CC=C1"),
|
379 |
+
inputs=None,
|
380 |
+
outputs=[molecule_image_output, status_viewer]
|
381 |
+
)
|
382 |
+
view_button_molecule.click(
|
383 |
+
display_molecule_image,
|
384 |
+
inputs=[smiles_input_viewer],
|
385 |
+
outputs=[molecule_image_output, status_viewer]
|
386 |
+
)
|
387 |
+
|
388 |
+
if __name__ == "__main__":
|
389 |
+
demo.launch()
|