File size: 5,209 Bytes
a6fe316
ade8cf8
90d214f
378f418
d0eefa8
378f418
 
 
 
 
 
 
90d214f
a6fe316
 
e22de9e
378f418
 
 
 
 
 
 
21583be
 
 
 
 
 
378f418
21583be
378f418
 
a6fe316
378f418
 
 
a6fe316
378f418
 
 
 
 
 
 
 
 
 
a6fe316
90d214f
378f418
 
 
90d214f
 
 
378f418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90d214f
378f418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350d57a
378f418
 
 
 
 
 
 
 
90d214f
378f418
90d214f
 
 
 
378f418
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from transformers import AutoTokenizer, AutoModelForCausalLM
from docx import Document
from pdfminer.high_level import extract_text
from transformers import GPT2Tokenizer
from dataclasses import dataclass
from typing import List
from tqdm import tqdm
import os 
import pandas as pd
import re
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np

tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", trust_remote_code=True)

EMBEDDING_SEG_LEN = 1500
EMBEDDING_MODEL = "gpt-4" 

EMBEDDING_CTX_LENGTH = 8191
EMBEDDING_ENCODING = "cl100k_base"
ENCODING = "gpt2"

@dataclass
class Paragraph:
    page_num: int
    paragraph_num: int
    content: str

def read_pdf_pdfminer(file_path) -> List[Paragraph]:
    text = extract_text(file_path).replace('\n', ' ').strip()
    paragraphs = batched(text, EMBEDDING_SEG_LEN)
    paragraphs_objs = []
    paragraph_num = 1
    for p in paragraphs:
        para = Paragraph(0, paragraph_num, p)
        paragraphs_objs.append(para)
        paragraph_num += 1
    return paragraphs_objs

def read_docx(file) -> List[Paragraph]:
    doc = Document(file)
    paragraphs = []
    for paragraph_num, paragraph in enumerate(doc.paragraphs, start=1):
        content = paragraph.text.strip()
        if content:
            para = Paragraph(1, paragraph_num, content)
            paragraphs.append(para)
    return paragraphs

def count_tokens(text, tokenizer):
    return len(tokenizer.encode(text))

def batched(iterable, n):
    l = len(iterable)
    for ndx in range(0, l, n):
        yield iterable[ndx : min(ndx + n, l)]

def compute_doc_embeddings(df, tokenizer):
    embeddings = {}
    for index, row in tqdm(df.iterrows(), total=df.shape[0]):
        doc = row["content"]
        doc_embedding = get_embedding(doc, tokenizer)
        embeddings[index] = doc_embedding
    return embeddings

def enhanced_context_extraction(document, keywords, vectorizer, tfidf_scores, top_n=5):
    paragraphs = [para for para in document.split("\n") if para]
    scores = [sum([para.lower().count(keyword) * tfidf_scores[vectorizer.vocabulary_[keyword]] for keyword in keywords if keyword in para.lower()]) for para in paragraphs]

    top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n]
    relevant_paragraphs = [paragraphs[i] for i in top_indices]
    
    return " ".join(relevant_paragraphs)

def targeted_context_extraction(document, keywords, vectorizer, tfidf_scores, top_n=5):
    paragraphs = [para for para in document.split("\n") if para]
    scores = [sum([para.lower().count(keyword) * tfidf_scores[vectorizer.vocabulary_[keyword]] for keyword in keywords]) for para in paragraphs]

    top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n]
    relevant_paragraphs = [paragraphs[i] for i in top_indices]
    
    return " ".join(relevant_paragraphs)


def extract_page_and_clause_references(paragraph: str) -> str:
    page_matches = re.findall(r'Page (\d+)', paragraph)
    clause_matches = re.findall(r'Clause (\d+\.\d+)', paragraph)
    
    page_ref = f"Page {page_matches[0]}" if page_matches else ""
    clause_ref = f"Clause {clause_matches[0]}" if clause_matches else ""
    
    return f"({page_ref}, {clause_ref})".strip(", ")

def refine_answer_based_on_question(question: str, answer: str) -> str:
    if "Does the agreement contain" in question:
        if "not" in answer or "No" in answer:
            refined_answer = f"No, the agreement does not contain {answer}"
        else:
            refined_answer = f"Yes, the agreement contains {answer}"
    else:
        refined_answer = answer

    return refined_answer

def answer_query_with_context(question: str, df: pd.DataFrame, tokenizer, model, top_n_paragraphs: int = 5) -> str:
    question_words = set(question.split())
    
    priority_keywords = ["duration", "term", "period", "month", "year", "day", "week", "agreement", "obligation", "effective date"]
    
    df['relevance_score'] = df['content'].apply(lambda x: len(question_words.intersection(set(x.split()))) + sum([x.lower().count(pk) for pk in priority_keywords]))
    
    most_relevant_paragraphs = df.sort_values(by='relevance_score', ascending=False).iloc[:top_n_paragraphs]['content'].tolist()
    
    context = "\n\n".join(most_relevant_paragraphs)
    prompt = f"Question: {question}\n\nContext: {context}\n\nAnswer:"
    
    inputs = tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True)
    outputs = model.generate(inputs, max_length=600)
    answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    references = extract_page_and_clause_references(context)
    answer = refine_answer_based_on_question(question, answer) + " " + references
    
    return answer

def get_embedding(text, tokenizer):
    try:
        inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
        outputs = model(**inputs)
        embedding = outputs.last_hidden_state
    except Exception as e:
        print("Error obtaining embedding:", e)
        embedding = []
    return embedding