H
commited on
start
Browse files- app.py +134 -0
- requirements.txt +19 -0
- search.py +136 -0
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import os
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import search # Import the search module
|
7 |
+
from reportlab.lib.pagesizes import letter
|
8 |
+
from reportlab.pdfgen import canvas
|
9 |
+
from docx import Document
|
10 |
+
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
st.set_page_config(
|
14 |
+
page_title="DocGPT GT",
|
15 |
+
page_icon="speech_balloon",
|
16 |
+
layout="wide",
|
17 |
+
)
|
18 |
+
|
19 |
+
hide_streamlit_style = """
|
20 |
+
<style>
|
21 |
+
#MainMenu {visibility: hidden;}
|
22 |
+
footer {visibility: hidden;}
|
23 |
+
footer:after {
|
24 |
+
content:'2023';
|
25 |
+
visibility: visible;
|
26 |
+
display: block;
|
27 |
+
position: relative;
|
28 |
+
padding: 5px;
|
29 |
+
top: 2px;
|
30 |
+
}
|
31 |
+
</style>
|
32 |
+
"""
|
33 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
34 |
+
|
35 |
+
def save_as_pdf(conversation):
|
36 |
+
pdf_filename = "conversation.pdf"
|
37 |
+
c = canvas.Canvas(pdf_filename, pagesize=letter)
|
38 |
+
|
39 |
+
c.drawString(100, 750, "Conversation:")
|
40 |
+
y_position = 730
|
41 |
+
for q, a in conversation:
|
42 |
+
c.drawString(120, y_position, f"Q: {q}")
|
43 |
+
c.drawString(120, y_position - 20, f"A: {a}")
|
44 |
+
y_position -= 40
|
45 |
+
|
46 |
+
c.save()
|
47 |
+
|
48 |
+
st.markdown(f"Download [PDF](./{pdf_filename})")
|
49 |
+
|
50 |
+
def save_as_docx(conversation):
|
51 |
+
doc = Document()
|
52 |
+
doc.add_heading('Conversation', 0)
|
53 |
+
|
54 |
+
for q, a in conversation:
|
55 |
+
doc.add_paragraph(f'Q: {q}')
|
56 |
+
doc.add_paragraph(f'A: {a}')
|
57 |
+
|
58 |
+
doc_filename = "conversation.docx"
|
59 |
+
doc.save(doc_filename)
|
60 |
+
|
61 |
+
st.markdown(f"Download [DOCX](./{doc_filename})")
|
62 |
+
|
63 |
+
def save_as_xlsx(conversation):
|
64 |
+
df = pd.DataFrame(conversation, columns=["Question", "Answer"])
|
65 |
+
xlsx_filename = "conversation.xlsx"
|
66 |
+
df.to_excel(xlsx_filename, index=False)
|
67 |
+
|
68 |
+
st.markdown(f"Download [XLSX](./{xlsx_filename})")
|
69 |
+
|
70 |
+
def save_as_txt(conversation):
|
71 |
+
txt_filename = "conversation.txt"
|
72 |
+
with open(txt_filename, "w") as txt_file:
|
73 |
+
for q, a in conversation:
|
74 |
+
txt_file.write(f"Q: {q}\nA: {a}\n\n")
|
75 |
+
|
76 |
+
st.markdown(f"Download [TXT](./{txt_filename})")
|
77 |
+
|
78 |
+
def main():
|
79 |
+
st.markdown('<h1>Ask anything from Legal Texts</h1><p style="font-size: 12; color: gray;"></p>', unsafe_allow_html=True)
|
80 |
+
st.markdown("<h2>Upload documents</h2>", unsafe_allow_html=True)
|
81 |
+
uploaded_files = st.file_uploader("Upload one or more documents", type=['pdf', 'docx'], accept_multiple_files=True)
|
82 |
+
question = st.text_input("Ask a question based on the documents", key="question_input")
|
83 |
+
|
84 |
+
progress = st.progress(0)
|
85 |
+
for i in range(100):
|
86 |
+
progress.progress(i + 1)
|
87 |
+
time.sleep(0.01)
|
88 |
+
|
89 |
+
if uploaded_files:
|
90 |
+
df = pd.DataFrame(columns=["page_num", "paragraph_num", "content", "tokens"])
|
91 |
+
for uploaded_file in uploaded_files:
|
92 |
+
paragraphs = search.read_pdf_pdfminer(uploaded_file) if uploaded_file.type == "application/pdf" else search.read_docx(uploaded_file)
|
93 |
+
temp_df = pd.DataFrame(
|
94 |
+
[(p.page_num, p.paragraph_num, p.content, search.count_tokens(p.content))
|
95 |
+
for p in paragraphs],
|
96 |
+
columns=["page_num", "paragraph_num", "content", "tokens"]
|
97 |
+
)
|
98 |
+
df = pd.concat([df, temp_df], ignore_index=True)
|
99 |
+
|
100 |
+
if "interactions" not in st.session_state:
|
101 |
+
st.session_state["interactions"] = []
|
102 |
+
|
103 |
+
answer = ""
|
104 |
+
if question != st.session_state.get("last_question", ""):
|
105 |
+
st.text("Searching...")
|
106 |
+
answer = search.answer_query_with_context(question, df)
|
107 |
+
st.session_state["interactions"].append((question, answer))
|
108 |
+
st.write(answer)
|
109 |
+
|
110 |
+
st.markdown("### Interaction History")
|
111 |
+
for q, a in st.session_state["interactions"]:
|
112 |
+
st.write(f"**Q:** {q}\n\n**A:** {a}")
|
113 |
+
|
114 |
+
st.session_state["last_question"] = question
|
115 |
+
|
116 |
+
st.markdown("<h2>Sample paragraphs</h2>", unsafe_allow_html=True)
|
117 |
+
sample_size = min(len(df), 5)
|
118 |
+
st.dataframe(df.sample(n=sample_size))
|
119 |
+
|
120 |
+
if st.button("Save as PDF"):
|
121 |
+
save_as_pdf(st.session_state["interactions"])
|
122 |
+
if st.button("Save as DOCX"):
|
123 |
+
save_as_docx(st.session_state["interactions"])
|
124 |
+
if st.button("Save as XLSX"):
|
125 |
+
save_as_xlsx(st.session_state["interactions"])
|
126 |
+
if st.button("Save as TXT"):
|
127 |
+
save_as_txt(st.session_state["interactions"])
|
128 |
+
|
129 |
+
|
130 |
+
else:
|
131 |
+
st.markdown("<h2>Please upload a document to proceed.</h2>", unsafe_allow_html=True)
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
certifi==2021.5.30
|
2 |
+
charset-normalizer==2.0.6
|
3 |
+
idna==3.2
|
4 |
+
openai==0.27.0
|
5 |
+
pandas==2.0.3
|
6 |
+
Pillow==10.0.0
|
7 |
+
PyPDF2==1.26.0
|
8 |
+
regex==2023.6.3
|
9 |
+
requests==2.26.0
|
10 |
+
sentencepiece==0.1.99
|
11 |
+
six==1.16.0
|
12 |
+
streamlit==1.25.0
|
13 |
+
tenacity==8.2.2
|
14 |
+
tiktoken==0.4.0
|
15 |
+
tqdm==4.65.0
|
16 |
+
transformers==4.31.0
|
17 |
+
urllib3==1.26.6
|
18 |
+
python-dotenv
|
19 |
+
dataclasses
|
search.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
from docx import Document
|
3 |
+
from pdfminer.high_level import extract_text
|
4 |
+
from transformers import GPT2Tokenizer
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import List
|
7 |
+
from tqdm import tqdm
|
8 |
+
import os
|
9 |
+
import pandas as pd
|
10 |
+
import re
|
11 |
+
|
12 |
+
EMBEDDING_SEG_LEN = 1500
|
13 |
+
COMPLETIONS_MODEL = "text-davinci-003"
|
14 |
+
EMBEDDING_MODEL = "gpt-4"
|
15 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
16 |
+
EMBEDDING_CTX_LENGTH = 8191
|
17 |
+
EMBEDDING_ENCODING = "cl100k_base"
|
18 |
+
ENCODING = "gpt2"
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class Paragraph:
|
22 |
+
page_num: int
|
23 |
+
paragraph_num: int
|
24 |
+
content: str
|
25 |
+
|
26 |
+
def read_pdf_pdfminer(file_path) -> List[Paragraph]:
|
27 |
+
text = extract_text(file_path).replace('\n', ' ').strip()
|
28 |
+
paragraphs = batched(text, EMBEDDING_SEG_LEN)
|
29 |
+
paragraphs_objs = []
|
30 |
+
paragraph_num = 1
|
31 |
+
for p in paragraphs:
|
32 |
+
para = Paragraph(0, paragraph_num, p)
|
33 |
+
paragraphs_objs.append(para)
|
34 |
+
paragraph_num += 1
|
35 |
+
return paragraphs_objs
|
36 |
+
|
37 |
+
def read_docx(file) -> List[Paragraph]:
|
38 |
+
doc = Document(file)
|
39 |
+
paragraphs = []
|
40 |
+
for paragraph_num, paragraph in enumerate(doc.paragraphs, start=1):
|
41 |
+
content = paragraph.text.strip()
|
42 |
+
if content:
|
43 |
+
para = Paragraph(1, paragraph_num, content)
|
44 |
+
paragraphs.append(para)
|
45 |
+
return paragraphs
|
46 |
+
|
47 |
+
def count_tokens(text):
|
48 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
49 |
+
return len(tokenizer.encode(text))
|
50 |
+
|
51 |
+
def batched(iterable, n):
|
52 |
+
l = len(iterable)
|
53 |
+
for ndx in range(0, l, n):
|
54 |
+
yield iterable[ndx : min(ndx + n, l)]
|
55 |
+
|
56 |
+
def compute_doc_embeddings(df):
|
57 |
+
embeddings = {}
|
58 |
+
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
|
59 |
+
doc = row["content"]
|
60 |
+
doc_embedding = get_embedding(doc)
|
61 |
+
embeddings[index] = doc_embedding
|
62 |
+
return embeddings
|
63 |
+
|
64 |
+
def enhanced_context_extraction(document, keywords, top_n=5):
|
65 |
+
paragraphs = [para for para in document.split("\n") if para]
|
66 |
+
def score_paragraph(para, keywords):
|
67 |
+
keyword_count = sum([para.lower().count(keyword) for keyword in keywords])
|
68 |
+
positions = [para.lower().find(keyword) for keyword in keywords if keyword in para.lower()]
|
69 |
+
proximity_score = 1 if max(positions) else 0
|
70 |
+
return keyword_count + proximity_score
|
71 |
+
scores = [score_paragraph(para, keywords) for para in paragraphs]
|
72 |
+
top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n]
|
73 |
+
relevant_paragraphs = [paragraphs[i] for i in top_indices]
|
74 |
+
return " ".join(relevant_paragraphs)
|
75 |
+
|
76 |
+
def targeted_context_extraction(document, keywords, top_n=5):
|
77 |
+
paragraphs = [para for para in document.split("\n") if para]
|
78 |
+
scores = [sum([para.lower().count(keyword) for keyword in keywords]) for para in paragraphs]
|
79 |
+
top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n]
|
80 |
+
relevant_paragraphs = [paragraphs[i] for i in top_indices]
|
81 |
+
return " ".join(relevant_paragraphs)
|
82 |
+
|
83 |
+
|
84 |
+
def extract_page_and_clause_references(paragraph: str) -> str:
|
85 |
+
page_matches = re.findall(r'Page (\d+)', paragraph)
|
86 |
+
clause_matches = re.findall(r'Clause (\d+\.\d+)', paragraph)
|
87 |
+
|
88 |
+
page_ref = f"Page {page_matches[0]}" if page_matches else ""
|
89 |
+
clause_ref = f"Clause {clause_matches[0]}" if clause_matches else ""
|
90 |
+
|
91 |
+
return f"({page_ref}, {clause_ref})".strip(", ")
|
92 |
+
|
93 |
+
def refine_answer_based_on_question(question: str, answer: str) -> str:
|
94 |
+
if "Does the agreement contain" in question:
|
95 |
+
if "not" in answer or "No" in answer:
|
96 |
+
refined_answer = f"No, the agreement does not contain {answer}"
|
97 |
+
else:
|
98 |
+
refined_answer = f"Yes, the agreement contains {answer}"
|
99 |
+
else:
|
100 |
+
refined_answer = answer
|
101 |
+
|
102 |
+
return refined_answer
|
103 |
+
|
104 |
+
def answer_query_with_context(question: str, df: pd.DataFrame, top_n_paragraphs: int = 5) -> str:
|
105 |
+
question_words = set(question.split())
|
106 |
+
|
107 |
+
# Prioritizing certain keywords for better context extraction
|
108 |
+
priority_keywords = ["duration", "term", "period", "month", "year", "day", "week", "agreement", "obligation", "effective date"]
|
109 |
+
|
110 |
+
df['relevance_score'] = df['content'].apply(lambda x: len(question_words.intersection(set(x.split()))) + sum([x.lower().count(pk) for pk in priority_keywords]))
|
111 |
+
|
112 |
+
most_relevant_paragraphs = df.sort_values(by='relevance_score', ascending=False).iloc[:top_n_paragraphs]['content'].tolist()
|
113 |
+
|
114 |
+
context = "\n\n".join(most_relevant_paragraphs)
|
115 |
+
prompt = f"Question: {question}\n\nContext: {context}\n\nAnswer:"
|
116 |
+
response = openai.Completion.create(model=COMPLETIONS_MODEL, prompt=prompt, max_tokens=150)
|
117 |
+
answer = response.choices[0].text.strip()
|
118 |
+
|
119 |
+
# Refine the answer to include page and clause references and match the phrasing of the question
|
120 |
+
references = extract_page_and_clause_references(context)
|
121 |
+
answer = refine_answer_based_on_question(question, answer) + " " + references
|
122 |
+
|
123 |
+
return answer
|
124 |
+
def get_embedding(text):
|
125 |
+
try:
|
126 |
+
response = openai.Embed.create(
|
127 |
+
model=EMBEDDING_MODEL,
|
128 |
+
context=text,
|
129 |
+
context_encoding=EMBEDDING_ENCODING,
|
130 |
+
context_length=EMBEDDING_CTX_LENGTH
|
131 |
+
)
|
132 |
+
embedding = response["embedding"]
|
133 |
+
except Exception as e:
|
134 |
+
print("Error obtaining embedding:", e)
|
135 |
+
embedding = []
|
136 |
+
return embedding
|