Update search.py
Browse files
search.py
CHANGED
|
@@ -1,135 +1,102 @@
|
|
| 1 |
-
from transformers import AutoTokenizer,
|
| 2 |
from docx import Document
|
| 3 |
from pdfminer.high_level import extract_text
|
| 4 |
-
from
|
| 5 |
from dataclasses import dataclass
|
| 6 |
-
from typing import List
|
| 7 |
-
from tqdm import tqdm
|
| 8 |
-
import os
|
| 9 |
-
import pandas as pd
|
| 10 |
-
import re
|
| 11 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 12 |
-
import numpy as np
|
| 13 |
|
| 14 |
-
tokenizer
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
EMBEDDING_SEG_LEN = 1500
|
| 18 |
-
EMBEDDING_MODEL = "gpt-4"
|
| 19 |
-
|
| 20 |
-
EMBEDDING_CTX_LENGTH = 8191
|
| 21 |
-
EMBEDDING_ENCODING = "cl100k_base"
|
| 22 |
-
ENCODING = "gpt2"
|
| 23 |
|
|
|
|
| 24 |
@dataclass
|
| 25 |
class Paragraph:
|
| 26 |
page_num: int
|
| 27 |
paragraph_num: int
|
| 28 |
content: str
|
|
|
|
| 29 |
|
| 30 |
-
|
|
|
|
| 31 |
text = extract_text(file_path).replace('\n', ' ').strip()
|
| 32 |
-
|
| 33 |
-
paragraphs_objs = []
|
| 34 |
-
paragraph_num = 1
|
| 35 |
-
for p in paragraphs:
|
| 36 |
-
para = Paragraph(0, paragraph_num, p)
|
| 37 |
-
paragraphs_objs.append(para)
|
| 38 |
-
paragraph_num += 1
|
| 39 |
-
return paragraphs_objs
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
for
|
| 45 |
-
content = paragraph.text.strip()
|
| 46 |
-
if content:
|
| 47 |
-
para = Paragraph(1, paragraph_num, content)
|
| 48 |
-
paragraphs.append(para)
|
| 49 |
return paragraphs
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
|
|
|
| 54 |
def batched(iterable, n):
|
| 55 |
l = len(iterable)
|
| 56 |
for ndx in range(0, l, n):
|
| 57 |
-
yield iterable[ndx
|
| 58 |
-
|
| 59 |
-
def compute_doc_embeddings(df, tokenizer):
|
| 60 |
-
embeddings = {}
|
| 61 |
-
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
|
| 62 |
-
doc = row["content"]
|
| 63 |
-
doc_embedding = get_embedding(doc, tokenizer)
|
| 64 |
-
embeddings[index] = doc_embedding
|
| 65 |
-
return embeddings
|
| 66 |
-
|
| 67 |
-
def enhanced_context_extraction(document, keywords, vectorizer, tfidf_scores, top_n=5):
|
| 68 |
-
paragraphs = [para for para in document.split("\n") if para]
|
| 69 |
-
scores = [sum([para.lower().count(keyword) * tfidf_scores[vectorizer.vocabulary_[keyword]] for keyword in keywords if keyword in para.lower()]) for para in paragraphs]
|
| 70 |
-
|
| 71 |
-
top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n]
|
| 72 |
-
relevant_paragraphs = [paragraphs[i] for i in top_indices]
|
| 73 |
-
|
| 74 |
-
return " ".join(relevant_paragraphs)
|
| 75 |
-
|
| 76 |
-
def targeted_context_extraction(document, keywords, vectorizer, tfidf_scores, top_n=5):
|
| 77 |
-
paragraphs = [para for para in document.split("\n") if para]
|
| 78 |
-
scores = [sum([para.lower().count(keyword) * tfidf_scores[vectorizer.vocabulary_[keyword]] for keyword in keywords]) for para in paragraphs]
|
| 79 |
-
|
| 80 |
-
top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n]
|
| 81 |
-
relevant_paragraphs = [paragraphs[i] for i in top_indices]
|
| 82 |
-
|
| 83 |
-
return " ".join(relevant_paragraphs)
|
| 84 |
|
| 85 |
-
|
| 86 |
-
def
|
| 87 |
-
page_matches = re.findall(r'Page (\d+)', paragraph)
|
| 88 |
-
clause_matches = re.findall(r'Clause (\d+\.\d+)', paragraph)
|
| 89 |
-
|
| 90 |
-
page_ref = f"Page {page_matches[0]}" if page_matches else ""
|
| 91 |
-
clause_ref = f"Clause {clause_matches[0]}" if clause_matches else ""
|
| 92 |
-
|
| 93 |
-
return f"({page_ref}, {clause_ref})".strip(", ")
|
| 94 |
-
|
| 95 |
-
def refine_answer_based_on_question(question: str, answer: str) -> str:
|
| 96 |
-
if "Does the agreement contain" in question:
|
| 97 |
-
if "not" in answer or "No" in answer:
|
| 98 |
-
refined_answer = f"No, the agreement does not contain {answer}"
|
| 99 |
-
else:
|
| 100 |
-
refined_answer = f"Yes, the agreement contains {answer}"
|
| 101 |
-
else:
|
| 102 |
-
refined_answer = answer
|
| 103 |
-
|
| 104 |
-
return refined_answer
|
| 105 |
-
|
| 106 |
-
def answer_query_with_context(question: str, df: pd.DataFrame, tokenizer, model, top_n_paragraphs: int = 5) -> str:
|
| 107 |
-
question_words = set(question.split())
|
| 108 |
-
|
| 109 |
-
priority_keywords = ["duration", "term", "period", "month", "year", "day", "week", "agreement", "obligation", "effective date"]
|
| 110 |
-
|
| 111 |
-
df['relevance_score'] = df['content'].apply(lambda x: len(question_words.intersection(set(x.split()))) + sum([x.lower().count(pk) for pk in priority_keywords]))
|
| 112 |
-
|
| 113 |
-
most_relevant_paragraphs = df.sort_values(by='relevance_score', ascending=False).iloc[:top_n_paragraphs]['content'].tolist()
|
| 114 |
-
|
| 115 |
-
context = "\n\n".join(most_relevant_paragraphs)
|
| 116 |
-
prompt = f"Question: {question}\n\nContext: {context}\n\nAnswer:"
|
| 117 |
-
|
| 118 |
-
inputs = tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True)
|
| 119 |
-
outputs = model.generate(inputs, max_length=200)
|
| 120 |
-
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 121 |
-
|
| 122 |
-
references = extract_page_and_clause_references(context)
|
| 123 |
-
answer = refine_answer_based_on_question(question, answer) + " " + references
|
| 124 |
-
|
| 125 |
-
return answer
|
| 126 |
-
|
| 127 |
-
def get_embedding(text, tokenizer):
|
| 128 |
try:
|
| 129 |
-
inputs = tokenizer(text, return_tensors="pt", max_length=
|
| 130 |
outputs = model(**inputs)
|
| 131 |
embedding = outputs.last_hidden_state
|
|
|
|
| 132 |
except Exception as e:
|
| 133 |
print("Error obtaining embedding:", e)
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 2 |
from docx import Document
|
| 3 |
from pdfminer.high_level import extract_text
|
| 4 |
+
from typing import List, Union
|
| 5 |
from dataclasses import dataclass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
# Initialize the tokenizer and model
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Define the Paragraph data class
|
| 12 |
@dataclass
|
| 13 |
class Paragraph:
|
| 14 |
page_num: int
|
| 15 |
paragraph_num: int
|
| 16 |
content: str
|
| 17 |
+
embedding: Union[list, None] = None
|
| 18 |
|
| 19 |
+
# Function to read text from a PDF file
|
| 20 |
+
def read_pdf(file_path: str) -> List[Paragraph]:
|
| 21 |
text = extract_text(file_path).replace('\n', ' ').strip()
|
| 22 |
+
return create_paragraphs(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
# Function to read text from a DOCX file
|
| 25 |
+
def read_docx(file_path: str) -> List[Paragraph]:
|
| 26 |
+
doc = Document(file_path)
|
| 27 |
+
paragraphs = [Paragraph(1, idx + 1, para.text.strip()) for idx, para in enumerate(doc.paragraphs) if para.text.strip()]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
return paragraphs
|
| 29 |
|
| 30 |
+
# Helper function to split text into paragraphs
|
| 31 |
+
def create_paragraphs(text: str, max_length: int = 1500) -> List[Paragraph]:
|
| 32 |
+
paragraphs = []
|
| 33 |
+
paragraph_num = 1
|
| 34 |
+
for chunk in batched(text, max_length):
|
| 35 |
+
para = Paragraph(0, paragraph_num, chunk)
|
| 36 |
+
paragraphs.append(para)
|
| 37 |
+
paragraph_num += 1
|
| 38 |
+
return paragraphs
|
| 39 |
|
| 40 |
+
# Helper function to batch an iterable
|
| 41 |
def batched(iterable, n):
|
| 42 |
l = len(iterable)
|
| 43 |
for ndx in range(0, l, n):
|
| 44 |
+
yield iterable[ndx: min(ndx + n, l)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
# Function to obtain embeddings for a given text
|
| 47 |
+
def get_embedding(text: str, tokenizer, max_length: int = 512) -> Union[list, None]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
try:
|
| 49 |
+
inputs = tokenizer(text, return_tensors="pt", max_length=max_length, truncation=True)
|
| 50 |
outputs = model(**inputs)
|
| 51 |
embedding = outputs.last_hidden_state
|
| 52 |
+
return embedding
|
| 53 |
except Exception as e:
|
| 54 |
print("Error obtaining embedding:", e)
|
| 55 |
+
return None
|
| 56 |
+
|
| 57 |
+
# Function to process a single paragraph and obtain its embedding
|
| 58 |
+
def process_paragraph(paragraph: Paragraph) -> Union[list, None]:
|
| 59 |
+
try:
|
| 60 |
+
embedding = get_embedding(paragraph.content, tokenizer)
|
| 61 |
+
return embedding
|
| 62 |
+
except Exception as e:
|
| 63 |
+
print(f"Error processing paragraph {paragraph.paragraph_num}: {e}")
|
| 64 |
+
return None
|
| 65 |
+
|
| 66 |
+
# Main function to process a document and obtain embeddings for each paragraph
|
| 67 |
+
def process_document(file_path: str, file_type: str = None) -> List[Paragraph]:
|
| 68 |
+
supported_types = ['pdf', 'docx']
|
| 69 |
+
if file_type not in supported_types:
|
| 70 |
+
print(f"Unsupported file type. Please provide one of the following supported types: {', '.join(supported_types)}")
|
| 71 |
+
return []
|
| 72 |
+
|
| 73 |
+
if file_type == 'pdf':
|
| 74 |
+
paragraphs = read_pdf(file_path)
|
| 75 |
+
elif file_type == 'docx':
|
| 76 |
+
paragraphs = read_docx(file_path)
|
| 77 |
+
|
| 78 |
+
if not paragraphs:
|
| 79 |
+
print("No paragraphs found in the document.")
|
| 80 |
+
return []
|
| 81 |
+
|
| 82 |
+
# Process each paragraph and obtain embeddings
|
| 83 |
+
for idx, paragraph in enumerate(paragraphs):
|
| 84 |
+
print(f"Processing paragraph {idx + 1}...")
|
| 85 |
+
embedding = process_paragraph(paragraph)
|
| 86 |
+
if embedding:
|
| 87 |
+
paragraph.embedding = embedding
|
| 88 |
+
else:
|
| 89 |
+
print(f"Embedding for paragraph {idx + 1} could not be obtained.")
|
| 90 |
+
return paragraphs
|
| 91 |
+
|
| 92 |
+
# Example usage
|
| 93 |
+
if __name__ == "__main__":
|
| 94 |
+
file_path = "example.pdf"
|
| 95 |
+
file_type = file_path.split(".")[-1]
|
| 96 |
+
paragraphs = process_document(file_path, file_type)
|
| 97 |
+
for para in paragraphs:
|
| 98 |
+
print(para.content)
|
| 99 |
+
if hasattr(para, 'embedding') and para.embedding is not None:
|
| 100 |
+
print("Embedding:", para.embedding)
|
| 101 |
+
else:
|
| 102 |
+
print("Embedding could not be obtained.")
|