Update search.py
Browse files
search.py
CHANGED
@@ -1,135 +1,102 @@
|
|
1 |
-
from transformers import AutoTokenizer,
|
2 |
from docx import Document
|
3 |
from pdfminer.high_level import extract_text
|
4 |
-
from
|
5 |
from dataclasses import dataclass
|
6 |
-
from typing import List
|
7 |
-
from tqdm import tqdm
|
8 |
-
import os
|
9 |
-
import pandas as pd
|
10 |
-
import re
|
11 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
12 |
-
import numpy as np
|
13 |
|
14 |
-
tokenizer
|
15 |
-
|
16 |
-
|
17 |
-
EMBEDDING_SEG_LEN = 1500
|
18 |
-
EMBEDDING_MODEL = "gpt-4"
|
19 |
-
|
20 |
-
EMBEDDING_CTX_LENGTH = 8191
|
21 |
-
EMBEDDING_ENCODING = "cl100k_base"
|
22 |
-
ENCODING = "gpt2"
|
23 |
|
|
|
24 |
@dataclass
|
25 |
class Paragraph:
|
26 |
page_num: int
|
27 |
paragraph_num: int
|
28 |
content: str
|
|
|
29 |
|
30 |
-
|
|
|
31 |
text = extract_text(file_path).replace('\n', ' ').strip()
|
32 |
-
|
33 |
-
paragraphs_objs = []
|
34 |
-
paragraph_num = 1
|
35 |
-
for p in paragraphs:
|
36 |
-
para = Paragraph(0, paragraph_num, p)
|
37 |
-
paragraphs_objs.append(para)
|
38 |
-
paragraph_num += 1
|
39 |
-
return paragraphs_objs
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
for
|
45 |
-
content = paragraph.text.strip()
|
46 |
-
if content:
|
47 |
-
para = Paragraph(1, paragraph_num, content)
|
48 |
-
paragraphs.append(para)
|
49 |
return paragraphs
|
50 |
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
|
|
54 |
def batched(iterable, n):
|
55 |
l = len(iterable)
|
56 |
for ndx in range(0, l, n):
|
57 |
-
yield iterable[ndx
|
58 |
-
|
59 |
-
def compute_doc_embeddings(df, tokenizer):
|
60 |
-
embeddings = {}
|
61 |
-
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
|
62 |
-
doc = row["content"]
|
63 |
-
doc_embedding = get_embedding(doc, tokenizer)
|
64 |
-
embeddings[index] = doc_embedding
|
65 |
-
return embeddings
|
66 |
-
|
67 |
-
def enhanced_context_extraction(document, keywords, vectorizer, tfidf_scores, top_n=5):
|
68 |
-
paragraphs = [para for para in document.split("\n") if para]
|
69 |
-
scores = [sum([para.lower().count(keyword) * tfidf_scores[vectorizer.vocabulary_[keyword]] for keyword in keywords if keyword in para.lower()]) for para in paragraphs]
|
70 |
-
|
71 |
-
top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n]
|
72 |
-
relevant_paragraphs = [paragraphs[i] for i in top_indices]
|
73 |
-
|
74 |
-
return " ".join(relevant_paragraphs)
|
75 |
-
|
76 |
-
def targeted_context_extraction(document, keywords, vectorizer, tfidf_scores, top_n=5):
|
77 |
-
paragraphs = [para for para in document.split("\n") if para]
|
78 |
-
scores = [sum([para.lower().count(keyword) * tfidf_scores[vectorizer.vocabulary_[keyword]] for keyword in keywords]) for para in paragraphs]
|
79 |
-
|
80 |
-
top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n]
|
81 |
-
relevant_paragraphs = [paragraphs[i] for i in top_indices]
|
82 |
-
|
83 |
-
return " ".join(relevant_paragraphs)
|
84 |
|
85 |
-
|
86 |
-
def
|
87 |
-
page_matches = re.findall(r'Page (\d+)', paragraph)
|
88 |
-
clause_matches = re.findall(r'Clause (\d+\.\d+)', paragraph)
|
89 |
-
|
90 |
-
page_ref = f"Page {page_matches[0]}" if page_matches else ""
|
91 |
-
clause_ref = f"Clause {clause_matches[0]}" if clause_matches else ""
|
92 |
-
|
93 |
-
return f"({page_ref}, {clause_ref})".strip(", ")
|
94 |
-
|
95 |
-
def refine_answer_based_on_question(question: str, answer: str) -> str:
|
96 |
-
if "Does the agreement contain" in question:
|
97 |
-
if "not" in answer or "No" in answer:
|
98 |
-
refined_answer = f"No, the agreement does not contain {answer}"
|
99 |
-
else:
|
100 |
-
refined_answer = f"Yes, the agreement contains {answer}"
|
101 |
-
else:
|
102 |
-
refined_answer = answer
|
103 |
-
|
104 |
-
return refined_answer
|
105 |
-
|
106 |
-
def answer_query_with_context(question: str, df: pd.DataFrame, tokenizer, model, top_n_paragraphs: int = 5) -> str:
|
107 |
-
question_words = set(question.split())
|
108 |
-
|
109 |
-
priority_keywords = ["duration", "term", "period", "month", "year", "day", "week", "agreement", "obligation", "effective date"]
|
110 |
-
|
111 |
-
df['relevance_score'] = df['content'].apply(lambda x: len(question_words.intersection(set(x.split()))) + sum([x.lower().count(pk) for pk in priority_keywords]))
|
112 |
-
|
113 |
-
most_relevant_paragraphs = df.sort_values(by='relevance_score', ascending=False).iloc[:top_n_paragraphs]['content'].tolist()
|
114 |
-
|
115 |
-
context = "\n\n".join(most_relevant_paragraphs)
|
116 |
-
prompt = f"Question: {question}\n\nContext: {context}\n\nAnswer:"
|
117 |
-
|
118 |
-
inputs = tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True)
|
119 |
-
outputs = model.generate(inputs, max_length=200)
|
120 |
-
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
121 |
-
|
122 |
-
references = extract_page_and_clause_references(context)
|
123 |
-
answer = refine_answer_based_on_question(question, answer) + " " + references
|
124 |
-
|
125 |
-
return answer
|
126 |
-
|
127 |
-
def get_embedding(text, tokenizer):
|
128 |
try:
|
129 |
-
inputs = tokenizer(text, return_tensors="pt", max_length=
|
130 |
outputs = model(**inputs)
|
131 |
embedding = outputs.last_hidden_state
|
|
|
132 |
except Exception as e:
|
133 |
print("Error obtaining embedding:", e)
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
from docx import Document
|
3 |
from pdfminer.high_level import extract_text
|
4 |
+
from typing import List, Union
|
5 |
from dataclasses import dataclass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Initialize the tokenizer and model
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Define the Paragraph data class
|
12 |
@dataclass
|
13 |
class Paragraph:
|
14 |
page_num: int
|
15 |
paragraph_num: int
|
16 |
content: str
|
17 |
+
embedding: Union[list, None] = None
|
18 |
|
19 |
+
# Function to read text from a PDF file
|
20 |
+
def read_pdf(file_path: str) -> List[Paragraph]:
|
21 |
text = extract_text(file_path).replace('\n', ' ').strip()
|
22 |
+
return create_paragraphs(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Function to read text from a DOCX file
|
25 |
+
def read_docx(file_path: str) -> List[Paragraph]:
|
26 |
+
doc = Document(file_path)
|
27 |
+
paragraphs = [Paragraph(1, idx + 1, para.text.strip()) for idx, para in enumerate(doc.paragraphs) if para.text.strip()]
|
|
|
|
|
|
|
|
|
28 |
return paragraphs
|
29 |
|
30 |
+
# Helper function to split text into paragraphs
|
31 |
+
def create_paragraphs(text: str, max_length: int = 1500) -> List[Paragraph]:
|
32 |
+
paragraphs = []
|
33 |
+
paragraph_num = 1
|
34 |
+
for chunk in batched(text, max_length):
|
35 |
+
para = Paragraph(0, paragraph_num, chunk)
|
36 |
+
paragraphs.append(para)
|
37 |
+
paragraph_num += 1
|
38 |
+
return paragraphs
|
39 |
|
40 |
+
# Helper function to batch an iterable
|
41 |
def batched(iterable, n):
|
42 |
l = len(iterable)
|
43 |
for ndx in range(0, l, n):
|
44 |
+
yield iterable[ndx: min(ndx + n, l)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Function to obtain embeddings for a given text
|
47 |
+
def get_embedding(text: str, tokenizer, max_length: int = 512) -> Union[list, None]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
try:
|
49 |
+
inputs = tokenizer(text, return_tensors="pt", max_length=max_length, truncation=True)
|
50 |
outputs = model(**inputs)
|
51 |
embedding = outputs.last_hidden_state
|
52 |
+
return embedding
|
53 |
except Exception as e:
|
54 |
print("Error obtaining embedding:", e)
|
55 |
+
return None
|
56 |
+
|
57 |
+
# Function to process a single paragraph and obtain its embedding
|
58 |
+
def process_paragraph(paragraph: Paragraph) -> Union[list, None]:
|
59 |
+
try:
|
60 |
+
embedding = get_embedding(paragraph.content, tokenizer)
|
61 |
+
return embedding
|
62 |
+
except Exception as e:
|
63 |
+
print(f"Error processing paragraph {paragraph.paragraph_num}: {e}")
|
64 |
+
return None
|
65 |
+
|
66 |
+
# Main function to process a document and obtain embeddings for each paragraph
|
67 |
+
def process_document(file_path: str, file_type: str = None) -> List[Paragraph]:
|
68 |
+
supported_types = ['pdf', 'docx']
|
69 |
+
if file_type not in supported_types:
|
70 |
+
print(f"Unsupported file type. Please provide one of the following supported types: {', '.join(supported_types)}")
|
71 |
+
return []
|
72 |
+
|
73 |
+
if file_type == 'pdf':
|
74 |
+
paragraphs = read_pdf(file_path)
|
75 |
+
elif file_type == 'docx':
|
76 |
+
paragraphs = read_docx(file_path)
|
77 |
+
|
78 |
+
if not paragraphs:
|
79 |
+
print("No paragraphs found in the document.")
|
80 |
+
return []
|
81 |
+
|
82 |
+
# Process each paragraph and obtain embeddings
|
83 |
+
for idx, paragraph in enumerate(paragraphs):
|
84 |
+
print(f"Processing paragraph {idx + 1}...")
|
85 |
+
embedding = process_paragraph(paragraph)
|
86 |
+
if embedding:
|
87 |
+
paragraph.embedding = embedding
|
88 |
+
else:
|
89 |
+
print(f"Embedding for paragraph {idx + 1} could not be obtained.")
|
90 |
+
return paragraphs
|
91 |
+
|
92 |
+
# Example usage
|
93 |
+
if __name__ == "__main__":
|
94 |
+
file_path = "example.pdf"
|
95 |
+
file_type = file_path.split(".")[-1]
|
96 |
+
paragraphs = process_document(file_path, file_type)
|
97 |
+
for para in paragraphs:
|
98 |
+
print(para.content)
|
99 |
+
if hasattr(para, 'embedding') and para.embedding is not None:
|
100 |
+
print("Embedding:", para.embedding)
|
101 |
+
else:
|
102 |
+
print("Embedding could not be obtained.")
|