|
# π°οΈ ZETIC.ai β On-Device AI for Every Device |
|
|
|
**Build. Deploy. Run. Anywhere.** |
|
ZETIC.ai helps AI engineers deploy models on *any* mobile device β without cloud GPU servers. |
|
We transform your existing AI models into **NPU-optimized, on-device runtimes** in **under 6 hours** including from global device benchmark to runtime source code generation. |
|
|
|
--- |
|
|
|
## π What We Do |
|
|
|
**ZETIC.MLange** β our core platform β enables **serverless AI** by: |
|
- **Automated Conversion**: Convert your PyTorch, ONNX, or TFLite model into a device-specific NPU library. |
|
- **Peak Performance**: Up to **60Γ faster** than GPU cloud inference, with zero accuracy loss. |
|
- **Broad Compatibility**: Supports Android, iOS, Linux; MediaTek, Qualcomm, Apple NPUs β more coming soon. |
|
- **End-to-End SDK**: From model optimization to app integration β no extra engineering required. |
|
|
|
--- |
|
|
|
## π Key Features |
|
|
|
- **Zero GPU Costs** β Replace expensive GPU cloud servers with *free* NPU power in devices. |
|
- **Full Privacy & Security** β Data never leaves the device. |
|
- **Ultra-Low Latency** β Real-time AI experiences, even offline. |
|
- **Cross-Platform** β One model β All devices β Same performance. |
|
|
|
--- |
|
|
|
## π¦ Example Use Cases |
|
|
|
- π **Speech Recognition (Whisper)** β Real-time, offline transcription on mobile. |
|
- π¦· **Dental AI Diagnostics** β Instant tooth condition analysis via smartphone camera. |
|
- ποΈ **Sports AI** β On-device golf swing analytics. |
|
- π€ **On-Device LLMs** β Chat & reasoning models running entirely offline. |
|
|
|
--- |
|
|
|
## π Benchmarks |
|
|
|
| Device | Task | Cloud GPU | On-Device NPU | Speedup | |
|
|--------|------|-----------|---------------|---------| |
|
| iPhone 16 Pro | Whisper-Small | 1.2s | 0.07s | **Γ17** | |
|
| Galaxy S24 Ultra | LLaMA-3-8B | 2.4s/token | 0.09s/token | **Γ26** | |
|
|
|
[π See more benchmarks Β»](https://mlange.zetic.ai) |
|
|
|
|
|
|
|
### YOLOv8n β NPU Latency (ms) |
|
| Device | Manufacturer | CPU | GPU | CPU/GPU | NPU | |
|
|--------|--------------|-----|-----|---------|-----| |
|
| Apple iPhone 16 | Apple | 126.27 | - | 8.98 | **2.03** | |
|
| Apple iPhone 16 Pro | Apple | 122.23 | - | 7.54 | **1.69** | |
|
| Samsung Galaxy S24+ | Qualcomm | 69.79 | 24.38 | 618.05 | **3.85** | |
|
| Samsung Galaxy Tab S9 | Qualcomm | 107.78 | 30.39 | 344.42 | **5.21** | |
|
| Samsung Galaxy S22 Ultra 5G | Qualcomm | 103.40 | 39.73 | 100.34 | **7.41** | |
|
|
|
--- |
|
|
|
### Whisper-tiny-encoder β NPU Latency (ms) |
|
| Device | Manufacturer | CPU | GPU | CPU/GPU | NPU | |
|
|--------|--------------|-----|-----|---------|-----| |
|
| Apple iPhone 16 | Apple | 552.13 | - | 44.49 | **19.01** | |
|
| Apple iPhone 15 Pro | Apple | 527.78 | - | 43.13 | **19.40** | |
|
} Samsung Galaxy S23 | Qualcomm | 290.62ms | 169.82ms | 2,795.18ms | **86.88** | |
|
| Samsung Galaxy S24+ | Qualcomm | 278.78 | 133.48 | 2619.56 | **106.44** | |
|
| Samsung Galaxy S23 Ultra | Qualcomm | 308.82 | 170.08 | 2688.97 | **68.34** | |
|
|
|
|
|
- **You can get runtime source code and benchmark report of your model with [ZETIC.MLange](https://mlange.zetic.ai)** |
|
|
|
--- |
|
|
|
## π¨π»βπ» Plug-and-play To Your App |
|
|
|
- The runtime SDK is also provided for your AI model with ZETIC.MLange |
|
|
|
- **iOS Integration** (Swift) |
|
|
|
``` swift |
|
|
|
// import |
|
import ZeticMLange |
|
|
|
// ... |
|
|
|
// (1) Load Zetic MLange model |
|
let model = try ZeticMLangeModel("MLANGE_PROJECT_API_KEY") |
|
|
|
// (2) Run model after preparing model inputs |
|
let inputs: [Data] = [] // Prepare your inputs |
|
|
|
try model.run(inputs) |
|
|
|
// (3) Get output data array |
|
let outputs = model.getOutputDataArray() |
|
|
|
``` |
|
|
|
- **Android Integration** (Kotlin, Java) |
|
|
|
``` kotlin |
|
// import |
|
import com.zeticai.mlange.core.model.Target |
|
import com.zeticai.mlange.core.model.ZeticMLangeModel |
|
|
|
// ... |
|
|
|
// (1) Load Zetic MLange model |
|
val model = ZeticMLangeModel(this, "MLANGE_PROJECT_API_KEY") |
|
|
|
// (2) Run model after preparing model inputs |
|
val inputs: Array<ByteBuffer> = // Prepare your inputs |
|
|
|
model.run(inputs) |
|
|
|
// (3) Get output buffers of the model |
|
val outputs = model.outputBuffers |
|
``` |
|
|
|
|
|
## π₯ Try It Now |
|
|
|
- **MLange Dashboard**: [https://mlange.zetic.ai](https://mlange.zetic.ai) |
|
- **Demo Apps**: [App Store](https://apps.apple.com/app/zeticapp/id6739862746) / [Google Play](https://play.google.com/store/apps/details?id=com.zeticai.zeticapp) |
|
|
|
--- |
|
|
|
## π§ Supported Targets |
|
|
|
- **OS**: Android, iOS, Linux |
|
- **NPUs**: MediaTek, Qualcomm, Apple (more coming) |
|
- **Frameworks In**: PyTorch, ONNX, TFLite |
|
- **Artifacts Out**: NPU-optimized runtime libraries + SDK bindings (Kotlin, Java, Swift, Flutter, React Native) |
|
|
|
## π¬ Contact Us |
|
|
|
- **Website**: [https://zetic.ai](https://zetic.ai) |
|
- **Email**: [email protected] |
|
- **LinkedIn**: [linkedin.com/company/zetic-ai](https://linkedin.com/company/zetic-ai) |
|
|
|
--- |
|
|
|
**ZETIC.ai** β AI for All, Anytime, Anywhere. |
|
Run your AI where it matters: **on the device.** |
|
|