File size: 4,797 Bytes
67fe046 dd9d28c 67fe046 806ff63 67fe046 806ff63 67fe046 e8daec3 67fe046 806ff63 67fe046 b878b86 6f6b163 b878b86 67fe046 b878b86 67fe046 b878b86 67fe046 b878b86 67fe046 6f6b163 b878b86 67fe046 b878b86 67fe046 b878b86 67fe046 b878b86 67fe046 e8daec3 67fe046 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# π°οΈ ZETIC.ai β On-Device AI for Every Device
**Build. Deploy. Run. Anywhere.**
ZETIC.ai helps AI engineers deploy models on *any* mobile device β without cloud GPU servers.
We transform your existing AI models into **NPU-optimized, on-device runtimes** in **under 6 hours** including from global device benchmark to runtime source code generation.
---
## π What We Do
**ZETIC.MLange** β our core platform β enables **serverless AI** by:
- **Automated Conversion**: Convert your PyTorch, ONNX, or TFLite model into a device-specific NPU library.
- **Peak Performance**: Up to **60Γ faster** than GPU cloud inference, with zero accuracy loss.
- **Broad Compatibility**: Supports Android, iOS, Linux; MediaTek, Qualcomm, Apple NPUs β more coming soon.
- **End-to-End SDK**: From model optimization to app integration β no extra engineering required.
---
## π Key Features
- **Zero GPU Costs** β Replace expensive GPU cloud servers with *free* NPU power in devices.
- **Full Privacy & Security** β Data never leaves the device.
- **Ultra-Low Latency** β Real-time AI experiences, even offline.
- **Cross-Platform** β One model β All devices β Same performance.
---
## π¦ Example Use Cases
- π **Speech Recognition (Whisper)** β Real-time, offline transcription on mobile.
- π¦· **Dental AI Diagnostics** β Instant tooth condition analysis via smartphone camera.
- ποΈ **Sports AI** β On-device golf swing analytics.
- π€ **On-Device LLMs** β Chat & reasoning models running entirely offline.
---
## π Benchmarks
| Device | Task | Cloud GPU | On-Device NPU | Speedup |
|--------|------|-----------|---------------|---------|
| iPhone 16 Pro | Whisper-Small | 1.2s | 0.07s | **Γ17** |
| Galaxy S24 Ultra | LLaMA-3-8B | 2.4s/token | 0.09s/token | **Γ26** |
[π See more benchmarks Β»](https://mlange.zetic.ai)
### YOLOv8n β NPU Latency (ms)
| Device | Manufacturer | CPU | GPU | CPU/GPU | NPU |
|--------|--------------|-----|-----|---------|-----|
| Apple iPhone 16 | Apple | 126.27 | - | 8.98 | **2.03** |
| Apple iPhone 16 Pro | Apple | 122.23 | - | 7.54 | **1.69** |
| Samsung Galaxy S24+ | Qualcomm | 69.79 | 24.38 | 618.05 | **3.85** |
| Samsung Galaxy Tab S9 | Qualcomm | 107.78 | 30.39 | 344.42 | **5.21** |
| Samsung Galaxy S22 Ultra 5G | Qualcomm | 103.40 | 39.73 | 100.34 | **7.41** |
---
### Whisper-tiny-encoder β NPU Latency (ms)
| Device | Manufacturer | CPU | GPU | CPU/GPU | NPU |
|--------|--------------|-----|-----|---------|-----|
| Apple iPhone 16 | Apple | 552.13 | - | 44.49 | **19.01** |
| Apple iPhone 15 Pro | Apple | 527.78 | - | 43.13 | **19.40** |
} Samsung Galaxy S23 | Qualcomm | 290.62ms | 169.82ms | 2,795.18ms | **86.88** |
| Samsung Galaxy S24+ | Qualcomm | 278.78 | 133.48 | 2619.56 | **106.44** |
| Samsung Galaxy S23 Ultra | Qualcomm | 308.82 | 170.08 | 2688.97 | **68.34** |
- **You can get runtime source code and benchmark report of your model with [ZETIC.MLange](https://mlange.zetic.ai)**
---
## π¨π»βπ» Plug-and-play To Your App
- The runtime SDK is also provided for your AI model with ZETIC.MLange
- **iOS Integration** (Swift)
``` swift
// import
import ZeticMLange
// ...
// (1) Load Zetic MLange model
let model = try ZeticMLangeModel("MLANGE_PROJECT_API_KEY")
// (2) Run model after preparing model inputs
let inputs: [Data] = [] // Prepare your inputs
try model.run(inputs)
// (3) Get output data array
let outputs = model.getOutputDataArray()
```
- **Android Integration** (Kotlin, Java)
``` kotlin
// import
import com.zeticai.mlange.core.model.Target
import com.zeticai.mlange.core.model.ZeticMLangeModel
// ...
// (1) Load Zetic MLange model
val model = ZeticMLangeModel(this, "MLANGE_PROJECT_API_KEY")
// (2) Run model after preparing model inputs
val inputs: Array<ByteBuffer> = // Prepare your inputs
model.run(inputs)
// (3) Get output buffers of the model
val outputs = model.outputBuffers
```
## π₯ Try It Now
- **MLange Dashboard**: [https://mlange.zetic.ai](https://mlange.zetic.ai)
- **Demo Apps**: [App Store](https://apps.apple.com/app/zeticapp/id6739862746) / [Google Play](https://play.google.com/store/apps/details?id=com.zeticai.zeticapp)
---
## π§ Supported Targets
- **OS**: Android, iOS, Linux
- **NPUs**: MediaTek, Qualcomm, Apple (more coming)
- **Frameworks In**: PyTorch, ONNX, TFLite
- **Artifacts Out**: NPU-optimized runtime libraries + SDK bindings (Kotlin, Java, Swift, Flutter, React Native)
## π¬ Contact Us
- **Website**: [https://zetic.ai](https://zetic.ai)
- **Email**: [email protected]
- **LinkedIn**: [linkedin.com/company/zetic-ai](https://linkedin.com/company/zetic-ai)
---
**ZETIC.ai** β AI for All, Anytime, Anywhere.
Run your AI where it matters: **on the device.**
|