LIA-X / gradio_tabs /animation.py
YaohuiW's picture
Update gradio_tabs/animation.py
62c64ac verified
import tempfile
import gradio as gr
import imageio
import spaces
import torch
import torchvision
import numpy as np
from PIL import Image
from einops import rearrange
# lables
labels_k = [
'yaw1',
'yaw2',
'pitch',
'roll1',
'roll2',
'neck',
'pout',
'open->close',
'"O" Mouth',
'smile',
'close->open',
'eyebrows',
'eyeballs1',
'eyeballs2',
]
labels_v = [
37, 39, 28, 15, 33, 31,
6, 25, 16, 19,
13, 24, 17, 26
]
def load_image(img, size):
img = Image.open(img).convert('RGB')
w, h = img.size
img = img.resize((size, size))
img = np.asarray(img)
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
return img / 255.0, w, h
def img_preprocessing(img_path, size):
img, w, h = load_image(img_path, size) # [0, 1]
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
return imgs_norm, w, h
def resize(img, size):
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((size, size), antialias=True),
])
return transform(img)
def resize_back(img, w, h):
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((h, w), antialias=True),
])
return transform(img)
def vid_preprocessing(vid_path, size):
vid_dict = torchvision.io.read_video(vid_path, pts_unit='sec')
vid = vid_dict[0].permute(0, 3, 1, 2).unsqueeze(0) # btchw
fps = vid_dict[2]['video_fps']
vid_norm = (vid / 255.0 - 0.5) * 2.0 # [-1, 1]
vid_norm = torch.cat([
resize(vid_norm[:, i, :, :, :], size).unsqueeze(1) for i in range(vid.size(1))
], dim=1)
return vid_norm, fps
def img_denorm(img):
img = img.clamp(-1, 1).cpu()
img = (img - img.min()) / (img.max() - img.min())
return img
def vid_denorm(vid):
vid = vid.clamp(-1, 1).cpu()
vid = (vid - vid.min()) / (vid.max() - vid.min())
return vid
def img_postprocessing(image, w, h):
image = resize_back(image, w, h)
image = image.permute(0, 2, 3, 1)
edited_image = img_denorm(image)
img_output = (edited_image[0].numpy() * 255).astype(np.uint8)
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
imageio.imwrite(temp_file.name, img_output, quality=8)
return temp_file.name
def vid_postprocessing(video, w, h, fps):
# video: BCTHW
b,c,t,_,_ = video.size()
vid_batch = resize_back(rearrange(video, "b c t h w -> (b t) c h w"), w, h)
vid = rearrange(vid_batch, "(b t) c h w -> b t h w c", b=b) # B T H W C
vid_np = (vid_denorm(vid[0]).numpy() * 255).astype('uint8')
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
imageio.mimwrite(temp_file.name, vid_np, fps=fps, codec='libx264', quality=8)
return temp_file.name
def animation(gen, chunk_size, device):
@spaces.GPU
@torch.no_grad()
def edit_media(image, *selected_s):
image_tensor, w, h = img_preprocessing(image, 512)
image_tensor = image_tensor.to(device)
edited_image_tensor = gen.edit_img(image_tensor, labels_v, selected_s)
# de-norm
edited_image = img_postprocessing(edited_image_tensor, w, h)
return edited_image
@spaces.GPU
@torch.no_grad()
def animate_media(image, video, *selected_s):
image_tensor, w, h = img_preprocessing(image, 512)
vid_target_tensor, fps = vid_preprocessing(video, 512)
image_tensor = image_tensor.to(device)
video_target_tensor = vid_target_tensor.to(device)
animated_video = gen.animate_batch(image_tensor, video_target_tensor, labels_v, selected_s, chunk_size)
edited_image = animated_video[:,:,0,:,:]
# postprocessing
animated_video = vid_postprocessing(animated_video, w, h, fps)
edited_image = img_postprocessing(edited_image, w, h)
return edited_image, animated_video
def clear_media():
return None, None, *([0] * len(labels_k))
with gr.Tab("Image Animation"):
inputs_s = []
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
with gr.Accordion(open=True, label="Source Image"):
image_input = gr.Image(type="filepath", elem_id="input_img", width=512) # , height=550)
gr.Examples(
examples=[
["./data/source/macron.png"],
["./data/source/einstein.png"],
["./data/source/taylor.png"],
["./data/source/portrait1.png"],
["./data/source/portrait2.png"],
["./data/source/portrait3.png"],
],
inputs=[image_input],
visible=True,
)
with gr.Accordion(open=True, label="Driving Video"):
video_input = gr.Video(width=512, elem_id="input_vid",) # , height=550)
gr.Examples(
examples=[
["./data/driving/driving6.mp4"],
["./data/driving/driving1.mp4"],
["./data/driving/driving2.mp4"],
["./data/driving/driving4.mp4"],
["./data/driving/driving8.mp4"],
],
inputs=[video_input],
visible=True,
)
with gr.Row():
with gr.Column(scale=1):
with gr.Row(): # Buttons now within a single Row
edit_btn = gr.Button("Edit", elem_id="button_edit",)
clear_btn = gr.Button("Clear", elem_id="button_clear")
with gr.Row():
animate_btn = gr.Button("Animate", elem_id="button_animate")
with gr.Column(scale=1):
with gr.Row():
with gr.Accordion(open=True, label="Edited Source Image"):
#image_output.render()
image_output = gr.Image(label="Output Image", elem_id="output_img", type='numpy', interactive=False, width=512)#.render()
with gr.Accordion(open=True, label="Animated Video"):
#video_output.render()
video_output = gr.Video(label="Output Video", elem_id="output_vid", width=512)#.render()
with gr.Accordion("Control Panel", open=True):
with gr.Tab("Head"):
with gr.Row():
for k in labels_k[:3]:
slider = gr.Slider(minimum=-1.0, maximum=0.5, value=0, label=k, elem_id="slider_"+str(k))
inputs_s.append(slider)
with gr.Row():
for k in labels_k[3:6]:
slider = gr.Slider(minimum=-0.5, maximum=0.5, value=0, label=k, elem_id="slider_"+str(k))
inputs_s.append(slider)
with gr.Tab("Mouth"):
with gr.Row():
for k in labels_k[6:8]:
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k, elem_id="slider_"+str(k))
inputs_s.append(slider)
with gr.Row():
for k in labels_k[8:10]:
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k, elem_id="slider_"+str(k))
inputs_s.append(slider)
with gr.Tab("Eyes"):
with gr.Row():
for k in labels_k[10:12]:
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k, elem_id="slider_"+str(k))
inputs_s.append(slider)
with gr.Row():
for k in labels_k[12:14]:
slider = gr.Slider(minimum=-0.2, maximum=0.2, value=0, label=k, elem_id="slider_"+str(k))
inputs_s.append(slider)
edit_btn.click(
fn=edit_media,
inputs=[image_input] + inputs_s,
outputs=[image_output],
show_progress=True
)
animate_btn.click(
fn=animate_media,
inputs=[image_input, video_input] + inputs_s,
outputs=[image_output, video_output],
show_progress=True
)
clear_btn.click(
fn=clear_media,
outputs=[image_output, video_output] + inputs_s
)
gr.Examples(
examples=[
['./data/source/macron.png', './data/driving/driving6.mp4',-0.37,-0.34,0,0,0,0,0,0,0,0,0,0,0,0],
['./data/source/taylor.png', './data/driving/driving6.mp4', -0.31, -0.2, 0, -0.26, -0.14, 0, 0.068, 0.131, 0, 0, 0,
0, -0.058, 0.087],
['./data/source/macron.png', './data/driving/driving1.mp4', 0.14,0,-0.26,-0.29,-0.11,0,-0.13,-0.18,0,0,0,0,-0.02,0.07],
['./data/source/portrait3.png', './data/driving/driving1.mp4', -0.03,0.21,-0.31,-0.12,-0.11,0,-0.05,-0.16,0,0,0,0,-0.02,0.07],
['./data/source/einstein.png','./data/driving/driving2.mp4',-0.31,0,0,0.16,0.08,0,-0.07,0,0.13,0,0,0,0,0],
['./data/source/portrait1.png', './data/driving/driving4.mp4', 0, 0, -0.17, -0.19, 0.25, 0, 0, -0.086,
0.087, 0, 0, 0, 0, 0],
['./data/source/portrait2.png','./data/driving/driving8.mp4',0,0,-0.25,0,0,0,0,0,0,0.126,0,0,0,0],
],
fn=animate_media,
inputs=[image_input, video_input] + inputs_s,
outputs=[image_output, video_output],
)