Spaces:
Running
on
Zero
Running
on
Zero
Update gradio_tabs/animation.py
Browse files- gradio_tabs/animation.py +56 -137
gradio_tabs/animation.py
CHANGED
|
@@ -36,74 +36,64 @@ labels_v = [
|
|
| 36 |
13, 24, 17, 26
|
| 37 |
]
|
| 38 |
|
| 39 |
-
|
| 40 |
def load_image(img, size):
|
| 41 |
|
| 42 |
img = Image.open(img).convert('RGB')
|
| 43 |
w, h = img.size
|
| 44 |
img = img.resize((size, size))
|
| 45 |
img = np.asarray(img)
|
| 46 |
-
img = np.copy(img)
|
| 47 |
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
|
| 48 |
|
| 49 |
return img / 255.0, w, h
|
| 50 |
|
| 51 |
|
| 52 |
-
@torch.compiler.allow_in_graph
|
| 53 |
def img_preprocessing(img_path, size):
|
| 54 |
-
img, w, h = load_image(img_path, size)
|
| 55 |
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
|
| 56 |
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
|
| 57 |
|
| 58 |
return imgs_norm, w, h
|
| 59 |
|
| 60 |
|
| 61 |
-
# Pre-compile resize transforms for better performance
|
| 62 |
-
resize_transform_cache = {}
|
| 63 |
-
|
| 64 |
-
def get_resize_transform(size):
|
| 65 |
-
"""Get cached resize transform - creates once, reuses many times"""
|
| 66 |
-
if size not in resize_transform_cache:
|
| 67 |
-
# Only create the transform if it doesn't exist in cache
|
| 68 |
-
resize_transform_cache[size] = torchvision.transforms.Resize(
|
| 69 |
-
size,
|
| 70 |
-
interpolation=torchvision.transforms.InterpolationMode.BILINEAR,
|
| 71 |
-
antialias=True
|
| 72 |
-
)
|
| 73 |
-
return resize_transform_cache[size]
|
| 74 |
-
|
| 75 |
-
|
| 76 |
def resize(img, size):
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
| 79 |
return transform(img)
|
| 80 |
|
| 81 |
|
| 82 |
def resize_back(img, w, h):
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
| 85 |
return transform(img)
|
| 86 |
-
|
| 87 |
|
| 88 |
def vid_preprocessing(vid_path, size):
|
| 89 |
vid_dict = torchvision.io.read_video(vid_path, pts_unit='sec')
|
| 90 |
-
vid = vid_dict[0].permute(0, 3, 1, 2)
|
| 91 |
fps = vid_dict[2]['video_fps']
|
| 92 |
vid_norm = (vid / 255.0 - 0.5) * 2.0 # [-1, 1]
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
return vid_norm, fps
|
| 96 |
|
| 97 |
|
| 98 |
def img_denorm(img):
|
| 99 |
-
img = img.clamp(-1, 1)
|
| 100 |
img = (img - img.min()) / (img.max() - img.min())
|
| 101 |
|
| 102 |
return img
|
| 103 |
|
| 104 |
|
| 105 |
def vid_denorm(vid):
|
| 106 |
-
vid = vid.clamp(-1, 1)
|
| 107 |
vid = (vid - vid.min()) / (vid.max() - vid.min())
|
| 108 |
|
| 109 |
return vid
|
|
@@ -111,30 +101,24 @@ def vid_denorm(vid):
|
|
| 111 |
|
| 112 |
def img_postprocessing(image, w, h):
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
img = (img - img.min()) / (img.max() - img.min()) # Still on GPU
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
# return the Numpy array directly, since Gradio supports it
|
| 125 |
-
return img_output
|
| 126 |
|
| 127 |
|
| 128 |
|
| 129 |
def vid_postprocessing(video, w, h, fps):
|
| 130 |
-
# video:
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
vid =
|
| 135 |
-
|
| 136 |
-
vid = rearrange(vid, "t c h w -> t h w c") # T H W C
|
| 137 |
-
vid_np = (vid.cpu().numpy() * 255).astype('uint8')
|
| 138 |
|
| 139 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
|
| 140 |
imageio.mimwrite(temp_file.name, vid_np, fps=fps, codec='libx264', quality=8)
|
|
@@ -142,59 +126,15 @@ def vid_postprocessing(video, w, h, fps):
|
|
| 142 |
|
| 143 |
|
| 144 |
def animation(gen, chunk_size, device):
|
| 145 |
-
|
| 146 |
-
@torch.compile
|
| 147 |
-
def compiled_enc_img(image_tensor, selected_s):
|
| 148 |
-
"""Compiled version of just the model inference"""
|
| 149 |
-
return gen.enc_img(image_tensor, labels_v, selected_s)
|
| 150 |
-
|
| 151 |
-
@torch.compile
|
| 152 |
-
def compiled_dec_img(z_s2r, alpha_r2s, feat_rgb):
|
| 153 |
-
"""Compiled version of just the model inference"""
|
| 154 |
-
return gen.dec_img(z_s2r, alpha_r2s, feat_rgb)
|
| 155 |
-
|
| 156 |
-
@torch.compile
|
| 157 |
-
def compiled_dec_vid(z_s2r, alpha_r2s, feat_rgb, img_start, img_target_batch):
|
| 158 |
-
"""Compiled version of animate_batch for animation tab"""
|
| 159 |
-
return gen.dec_vid(z_s2r, alpha_r2s, feat_rgb, img_start, img_target_batch)
|
| 160 |
-
|
| 161 |
-
# Pre-warm the compiled model with dummy data to reduce first-run compilation time
|
| 162 |
-
def _warmup_model():
|
| 163 |
-
"""Pre-warm the model compilation with representative shapes"""
|
| 164 |
-
print("[img_edit] Pre-warming model compilation...")
|
| 165 |
-
dummy_image = torch.randn(1, 3, 512, 512, device=device)
|
| 166 |
-
dummy_video = torch.randn(chunk_size, 3, 512, 512, device=device)
|
| 167 |
-
dummy_selected_s = [0.0] * len(labels_v)
|
| 168 |
-
|
| 169 |
-
try:
|
| 170 |
-
with torch.inference_mode():
|
| 171 |
-
z_s2r, alpha_r2s, feat_rgb = compiled_enc_img(dummy_image, dummy_selected_s)
|
| 172 |
-
_ = compiled_dec_img(z_s2r, alpha_r2s, feat_rgb)
|
| 173 |
-
print("[img_edit] Model pre-warming completed successfully")
|
| 174 |
-
except Exception as e:
|
| 175 |
-
print(f"[img_edit] Model pre-warming failed (will compile on first use): {e}")
|
| 176 |
-
|
| 177 |
-
try:
|
| 178 |
-
with torch.inference_mode():
|
| 179 |
-
z_s2r, alpha_r2s, feat_rgb = compiled_enc_img(dummy_image, dummy_selected_s)
|
| 180 |
-
_ = compiled_dec_vid(z_s2r, alpha_r2s, feat_rgb, dummy_video[0], dummy_video)
|
| 181 |
-
print("[img_animation] Model pre-warming completed successfully")
|
| 182 |
-
except Exception as e:
|
| 183 |
-
print(f"[img_animation] Model pre-warming failed (will compile on first use): {e}")
|
| 184 |
-
|
| 185 |
-
# Pre-warm the model
|
| 186 |
-
_warmup_model()
|
| 187 |
-
|
| 188 |
-
|
| 189 |
@spaces.GPU
|
| 190 |
-
@torch.
|
| 191 |
def edit_media(image, *selected_s):
|
| 192 |
|
| 193 |
image_tensor, w, h = img_preprocessing(image, 512)
|
| 194 |
image_tensor = image_tensor.to(device)
|
| 195 |
|
| 196 |
-
|
| 197 |
-
edited_image_tensor = compiled_dec_img(z_s2r, alpha_r2s, feat_rgb)
|
| 198 |
|
| 199 |
# de-norm
|
| 200 |
edited_image = img_postprocessing(edited_image_tensor, w, h)
|
|
@@ -202,35 +142,16 @@ def animation(gen, chunk_size, device):
|
|
| 202 |
return edited_image
|
| 203 |
|
| 204 |
@spaces.GPU
|
| 205 |
-
@torch.
|
| 206 |
def animate_media(image, video, *selected_s):
|
| 207 |
|
| 208 |
image_tensor, w, h = img_preprocessing(image, 512)
|
| 209 |
vid_target_tensor, fps = vid_preprocessing(video, 512)
|
| 210 |
image_tensor = image_tensor.to(device)
|
| 211 |
-
video_target_tensor = vid_target_tensor.to(device)
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
res = []
|
| 216 |
-
t, c, h, w = video_target_tensor.size()
|
| 217 |
-
|
| 218 |
-
chunks = t // chunk_size
|
| 219 |
-
if t%chunk_size == 0:
|
| 220 |
-
vid_target_tensor_batch = torch.zeros(chunk_size * chunks, c, h, w).to(device)
|
| 221 |
-
else:
|
| 222 |
-
vid_target_tensor_batch = torch.zeros(chunk_size * (chunks + 1), c, h, w).to(device)
|
| 223 |
-
vid_target_tensor_batch[:t] = video_target_tensor
|
| 224 |
-
|
| 225 |
-
z_s2r, alpha_r2s, feat_rgb = compiled_enc_img(image_tensor, selected_s)
|
| 226 |
-
for i in range(chunks+1):
|
| 227 |
-
|
| 228 |
-
img_target_batch = vid_target_tensor_batch[i * chunk_size:(i + 1) * chunk_size, :, :, :]
|
| 229 |
-
img_animated_batch = compiled_dec_vid(z_s2r, alpha_r2s, feat_rgb, img_start, img_target_batch)
|
| 230 |
-
|
| 231 |
-
res.append(img_animated_batch)
|
| 232 |
-
animated_video = torch.cat(res, dim=0)[:t] # TCHW
|
| 233 |
-
edited_image = animated_video[0:1,:,:,:]
|
| 234 |
|
| 235 |
# postprocessing
|
| 236 |
animated_video = vid_postprocessing(animated_video, w, h, fps)
|
|
@@ -241,7 +162,7 @@ def animation(gen, chunk_size, device):
|
|
| 241 |
def clear_media():
|
| 242 |
return None, None, *([0] * len(labels_k))
|
| 243 |
|
| 244 |
-
|
| 245 |
with gr.Tab("Image Animation"):
|
| 246 |
|
| 247 |
inputs_s = []
|
|
@@ -281,10 +202,11 @@ def animation(gen, chunk_size, device):
|
|
| 281 |
with gr.Row():
|
| 282 |
with gr.Column(scale=1):
|
| 283 |
with gr.Row(): # Buttons now within a single Row
|
| 284 |
-
|
| 285 |
-
animate_btn = gr.Button("Animate", elem_id="button_animate")
|
| 286 |
-
with gr.Row():
|
| 287 |
clear_btn = gr.Button("Clear", elem_id="button_clear")
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
|
| 290 |
with gr.Column(scale=1):
|
|
@@ -299,7 +221,7 @@ def animation(gen, chunk_size, device):
|
|
| 299 |
#video_output.render()
|
| 300 |
video_output = gr.Video(label="Output Video", elem_id="output_vid", width=512)#.render()
|
| 301 |
|
| 302 |
-
with gr.Accordion("Control Panel
|
| 303 |
with gr.Tab("Head"):
|
| 304 |
with gr.Row():
|
| 305 |
for k in labels_k[:3]:
|
|
@@ -329,23 +251,20 @@ def animation(gen, chunk_size, device):
|
|
| 329 |
for k in labels_k[12:14]:
|
| 330 |
slider = gr.Slider(minimum=-0.2, maximum=0.2, value=0, label=k, elem_id="slider_"+str(k))
|
| 331 |
inputs_s.append(slider)
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
# currently we have a latency around 450ms
|
| 341 |
-
stream_every=0.5
|
| 342 |
-
)
|
| 343 |
|
| 344 |
animate_btn.click(
|
| 345 |
fn=animate_media,
|
| 346 |
inputs=[image_input, video_input] + inputs_s,
|
| 347 |
outputs=[image_output, video_output],
|
| 348 |
-
|
| 349 |
)
|
| 350 |
|
| 351 |
clear_btn.click(
|
|
@@ -361,14 +280,14 @@ def animation(gen, chunk_size, device):
|
|
| 361 |
['./data/source/macron.png', './data/driving/driving1.mp4', 0.14,0,-0.26,-0.29,-0.11,0,-0.13,-0.18,0,0,0,0,-0.02,0.07],
|
| 362 |
['./data/source/portrait3.png', './data/driving/driving1.mp4', -0.03,0.21,-0.31,-0.12,-0.11,0,-0.05,-0.16,0,0,0,0,-0.02,0.07],
|
| 363 |
['./data/source/einstein.png','./data/driving/driving2.mp4',-0.31,0,0,0.16,0.08,0,-0.07,0,0.13,0,0,0,0,0],
|
| 364 |
-
|
| 365 |
0.087, 0, 0, 0, 0, 0],
|
| 366 |
['./data/source/portrait2.png','./data/driving/driving8.mp4',0,0,-0.25,0,0,0,0,0,0,0.126,0,0,0,0],
|
| 367 |
|
| 368 |
],
|
| 369 |
-
|
| 370 |
inputs=[image_input, video_input] + inputs_s,
|
| 371 |
-
|
| 372 |
)
|
| 373 |
|
| 374 |
|
|
|
|
| 36 |
13, 24, 17, 26
|
| 37 |
]
|
| 38 |
|
| 39 |
+
|
| 40 |
def load_image(img, size):
|
| 41 |
|
| 42 |
img = Image.open(img).convert('RGB')
|
| 43 |
w, h = img.size
|
| 44 |
img = img.resize((size, size))
|
| 45 |
img = np.asarray(img)
|
|
|
|
| 46 |
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
|
| 47 |
|
| 48 |
return img / 255.0, w, h
|
| 49 |
|
| 50 |
|
|
|
|
| 51 |
def img_preprocessing(img_path, size):
|
| 52 |
+
img, w, h = load_image(img_path, size) # [0, 1]
|
| 53 |
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
|
| 54 |
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
|
| 55 |
|
| 56 |
return imgs_norm, w, h
|
| 57 |
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
def resize(img, size):
|
| 60 |
+
transform = torchvision.transforms.Compose([
|
| 61 |
+
torchvision.transforms.Resize((size, size), antialias=True),
|
| 62 |
+
])
|
| 63 |
+
|
| 64 |
return transform(img)
|
| 65 |
|
| 66 |
|
| 67 |
def resize_back(img, w, h):
|
| 68 |
+
transform = torchvision.transforms.Compose([
|
| 69 |
+
torchvision.transforms.Resize((h, w), antialias=True),
|
| 70 |
+
])
|
| 71 |
+
|
| 72 |
return transform(img)
|
| 73 |
+
|
| 74 |
|
| 75 |
def vid_preprocessing(vid_path, size):
|
| 76 |
vid_dict = torchvision.io.read_video(vid_path, pts_unit='sec')
|
| 77 |
+
vid = vid_dict[0].permute(0, 3, 1, 2).unsqueeze(0) # btchw
|
| 78 |
fps = vid_dict[2]['video_fps']
|
| 79 |
vid_norm = (vid / 255.0 - 0.5) * 2.0 # [-1, 1]
|
| 80 |
+
|
| 81 |
+
vid_norm = torch.cat([
|
| 82 |
+
resize(vid_norm[:, i, :, :, :], size).unsqueeze(1) for i in range(vid.size(1))
|
| 83 |
+
], dim=1)
|
| 84 |
|
| 85 |
return vid_norm, fps
|
| 86 |
|
| 87 |
|
| 88 |
def img_denorm(img):
|
| 89 |
+
img = img.clamp(-1, 1).cpu()
|
| 90 |
img = (img - img.min()) / (img.max() - img.min())
|
| 91 |
|
| 92 |
return img
|
| 93 |
|
| 94 |
|
| 95 |
def vid_denorm(vid):
|
| 96 |
+
vid = vid.clamp(-1, 1).cpu()
|
| 97 |
vid = (vid - vid.min()) / (vid.max() - vid.min())
|
| 98 |
|
| 99 |
return vid
|
|
|
|
| 101 |
|
| 102 |
def img_postprocessing(image, w, h):
|
| 103 |
|
| 104 |
+
image = resize_back(image, w, h)
|
| 105 |
+
image = image.permute(0, 2, 3, 1)
|
| 106 |
+
edited_image = img_denorm(image)
|
| 107 |
+
img_output = (edited_image[0].numpy() * 255).astype(np.uint8)
|
|
|
|
| 108 |
|
| 109 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
| 110 |
+
imageio.imwrite(temp_file.name, img_output, quality=8)
|
| 111 |
+
return temp_file.name
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
|
| 114 |
|
| 115 |
def vid_postprocessing(video, w, h, fps):
|
| 116 |
+
# video: BCTHW
|
| 117 |
|
| 118 |
+
b,c,t,_,_ = video.size()
|
| 119 |
+
vid_batch = resize_back(rearrange(video, "b c t h w -> (b t) c h w"), w, h)
|
| 120 |
+
vid = rearrange(vid_batch, "(b t) c h w -> b t h w c", b=b) # B T H W C
|
| 121 |
+
vid_np = (vid_denorm(vid[0]).numpy() * 255).astype('uint8')
|
|
|
|
|
|
|
| 122 |
|
| 123 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
|
| 124 |
imageio.mimwrite(temp_file.name, vid_np, fps=fps, codec='libx264', quality=8)
|
|
|
|
| 126 |
|
| 127 |
|
| 128 |
def animation(gen, chunk_size, device):
|
| 129 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
@spaces.GPU
|
| 131 |
+
@torch.no_grad()
|
| 132 |
def edit_media(image, *selected_s):
|
| 133 |
|
| 134 |
image_tensor, w, h = img_preprocessing(image, 512)
|
| 135 |
image_tensor = image_tensor.to(device)
|
| 136 |
|
| 137 |
+
edited_image_tensor = gen.edit_img(image_tensor, labels_v, selected_s)
|
|
|
|
| 138 |
|
| 139 |
# de-norm
|
| 140 |
edited_image = img_postprocessing(edited_image_tensor, w, h)
|
|
|
|
| 142 |
return edited_image
|
| 143 |
|
| 144 |
@spaces.GPU
|
| 145 |
+
@torch.no_grad()
|
| 146 |
def animate_media(image, video, *selected_s):
|
| 147 |
|
| 148 |
image_tensor, w, h = img_preprocessing(image, 512)
|
| 149 |
vid_target_tensor, fps = vid_preprocessing(video, 512)
|
| 150 |
image_tensor = image_tensor.to(device)
|
| 151 |
+
video_target_tensor = vid_target_tensor.to(device)
|
| 152 |
+
|
| 153 |
+
animated_video = gen.animate_batch(image_tensor, video_target_tensor, labels_v, selected_s, chunk_size)
|
| 154 |
+
edited_image = animated_video[:,:,0,:,:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
# postprocessing
|
| 157 |
animated_video = vid_postprocessing(animated_video, w, h, fps)
|
|
|
|
| 162 |
def clear_media():
|
| 163 |
return None, None, *([0] * len(labels_k))
|
| 164 |
|
| 165 |
+
|
| 166 |
with gr.Tab("Image Animation"):
|
| 167 |
|
| 168 |
inputs_s = []
|
|
|
|
| 202 |
with gr.Row():
|
| 203 |
with gr.Column(scale=1):
|
| 204 |
with gr.Row(): # Buttons now within a single Row
|
| 205 |
+
edit_btn = gr.Button("Edit", elem_id="button_edit",)
|
|
|
|
|
|
|
| 206 |
clear_btn = gr.Button("Clear", elem_id="button_clear")
|
| 207 |
+
with gr.Row():
|
| 208 |
+
animate_btn = gr.Button("Animate", elem_id="button_animate")
|
| 209 |
+
|
| 210 |
|
| 211 |
|
| 212 |
with gr.Column(scale=1):
|
|
|
|
| 221 |
#video_output.render()
|
| 222 |
video_output = gr.Video(label="Output Video", elem_id="output_vid", width=512)#.render()
|
| 223 |
|
| 224 |
+
with gr.Accordion("Control Panel", open=True):
|
| 225 |
with gr.Tab("Head"):
|
| 226 |
with gr.Row():
|
| 227 |
for k in labels_k[:3]:
|
|
|
|
| 251 |
for k in labels_k[12:14]:
|
| 252 |
slider = gr.Slider(minimum=-0.2, maximum=0.2, value=0, label=k, elem_id="slider_"+str(k))
|
| 253 |
inputs_s.append(slider)
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
edit_btn.click(
|
| 257 |
+
fn=edit_media,
|
| 258 |
+
inputs=[image_input] + inputs_s,
|
| 259 |
+
outputs=[image_output],
|
| 260 |
+
show_progress=True
|
| 261 |
+
)
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
animate_btn.click(
|
| 264 |
fn=animate_media,
|
| 265 |
inputs=[image_input, video_input] + inputs_s,
|
| 266 |
outputs=[image_output, video_output],
|
| 267 |
+
show_progress=True
|
| 268 |
)
|
| 269 |
|
| 270 |
clear_btn.click(
|
|
|
|
| 280 |
['./data/source/macron.png', './data/driving/driving1.mp4', 0.14,0,-0.26,-0.29,-0.11,0,-0.13,-0.18,0,0,0,0,-0.02,0.07],
|
| 281 |
['./data/source/portrait3.png', './data/driving/driving1.mp4', -0.03,0.21,-0.31,-0.12,-0.11,0,-0.05,-0.16,0,0,0,0,-0.02,0.07],
|
| 282 |
['./data/source/einstein.png','./data/driving/driving2.mp4',-0.31,0,0,0.16,0.08,0,-0.07,0,0.13,0,0,0,0,0],
|
| 283 |
+
['./data/source/portrait1.png', './data/driving/driving4.mp4', 0, 0, -0.17, -0.19, 0.25, 0, 0, -0.086,
|
| 284 |
0.087, 0, 0, 0, 0, 0],
|
| 285 |
['./data/source/portrait2.png','./data/driving/driving8.mp4',0,0,-0.25,0,0,0,0,0,0,0.126,0,0,0,0],
|
| 286 |
|
| 287 |
],
|
| 288 |
+
fn=animate_media,
|
| 289 |
inputs=[image_input, video_input] + inputs_s,
|
| 290 |
+
outputs=[image_output, video_output],
|
| 291 |
)
|
| 292 |
|
| 293 |
|