Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,219 Bytes
1672673 c42db24 1672673 c42db24 2866038 8b1952d c42db24 8b1952d c42db24 62c64ac c42db24 8b1952d 1eb3628 8b1952d c42db24 8b1952d c42db24 62c64ac c42db24 8b1952d c42db24 6b0ef0f 62c64ac c42db24 8b1952d 62c64ac 8b1952d 62c64ac 8b1952d c42db24 62c64ac c42db24 62c64ac c42db24 62c64ac c42db24 62c64ac c42db24 8b1952d c42db24 62c64ac 6b0ef0f 62c64ac 1672673 c42db24 8b1952d 62c64ac 6b0ef0f 62c64ac c42db24 1672673 6416c96 1672673 c42db24 2d73c25 62c64ac 1672673 62c64ac 685fe6b c42db24 8b1952d 685fe6b c42db24 62c64ac c42db24 685fe6b 8b1952d c42db24 685fe6b c42db24 1672673 62c64ac 685fe6b c42db24 8b1952d 685fe6b 62c64ac c42db24 685fe6b 8b1952d 3d9bc73 c42db24 685fe6b c1a5130 62c64ac 13617d9 c42db24 07cfcc8 c42db24 07cfcc8 c42db24 4279bed c42db24 4879232 c42db24 62c64ac 6b0ef0f 62c64ac c42db24 2993657 c42db24 2993657 c42db24 62c64ac c42db24 07cfcc8 c42db24 07cfcc8 c42db24 07cfcc8 c42db24 07cfcc8 c42db24 07cfcc8 c42db24 07cfcc8 c42db24 62c64ac c42db24 3d9bc73 62c64ac c42db24 6275e3e 88cc4f6 4279bed b04407e c42db24 62c64ac 88cc4f6 a76b0bc 6275e3e c42db24 62c64ac 47c822a 62c64ac c42db24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import tempfile
import gradio as gr
import imageio
import spaces
import torch
import torchvision
import numpy as np
from PIL import Image
from einops import rearrange
# lables
labels_k = [
'yaw1',
'yaw2',
'pitch',
'roll1',
'roll2',
'neck',
'pout',
'open->close',
'"O" Mouth',
'smile',
'close->open',
'eyebrows',
'eyeballs1',
'eyeballs2',
]
labels_v = [
37, 39, 28, 15, 33, 31,
6, 25, 16, 19,
13, 24, 17, 26
]
def load_image(img, size):
img = Image.open(img).convert('RGB')
w, h = img.size
img = img.resize((size, size))
img = np.asarray(img)
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
return img / 255.0, w, h
def img_preprocessing(img_path, size):
img, w, h = load_image(img_path, size) # [0, 1]
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
return imgs_norm, w, h
def resize(img, size):
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((size, size), antialias=True),
])
return transform(img)
def resize_back(img, w, h):
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((h, w), antialias=True),
])
return transform(img)
def vid_preprocessing(vid_path, size):
vid_dict = torchvision.io.read_video(vid_path, pts_unit='sec')
vid = vid_dict[0].permute(0, 3, 1, 2).unsqueeze(0) # btchw
fps = vid_dict[2]['video_fps']
vid_norm = (vid / 255.0 - 0.5) * 2.0 # [-1, 1]
vid_norm = torch.cat([
resize(vid_norm[:, i, :, :, :], size).unsqueeze(1) for i in range(vid.size(1))
], dim=1)
return vid_norm, fps
def img_denorm(img):
img = img.clamp(-1, 1).cpu()
img = (img - img.min()) / (img.max() - img.min())
return img
def vid_denorm(vid):
vid = vid.clamp(-1, 1).cpu()
vid = (vid - vid.min()) / (vid.max() - vid.min())
return vid
def img_postprocessing(image, w, h):
image = resize_back(image, w, h)
image = image.permute(0, 2, 3, 1)
edited_image = img_denorm(image)
img_output = (edited_image[0].numpy() * 255).astype(np.uint8)
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
imageio.imwrite(temp_file.name, img_output, quality=8)
return temp_file.name
def vid_postprocessing(video, w, h, fps):
# video: BCTHW
b,c,t,_,_ = video.size()
vid_batch = resize_back(rearrange(video, "b c t h w -> (b t) c h w"), w, h)
vid = rearrange(vid_batch, "(b t) c h w -> b t h w c", b=b) # B T H W C
vid_np = (vid_denorm(vid[0]).numpy() * 255).astype('uint8')
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
imageio.mimwrite(temp_file.name, vid_np, fps=fps, codec='libx264', quality=8)
return temp_file.name
def animation(gen, chunk_size, device):
@spaces.GPU
@torch.no_grad()
def edit_media(image, *selected_s):
image_tensor, w, h = img_preprocessing(image, 512)
image_tensor = image_tensor.to(device)
edited_image_tensor = gen.edit_img(image_tensor, labels_v, selected_s)
# de-norm
edited_image = img_postprocessing(edited_image_tensor, w, h)
return edited_image
@spaces.GPU
@torch.no_grad()
def animate_media(image, video, *selected_s):
image_tensor, w, h = img_preprocessing(image, 512)
vid_target_tensor, fps = vid_preprocessing(video, 512)
image_tensor = image_tensor.to(device)
video_target_tensor = vid_target_tensor.to(device)
animated_video = gen.animate_batch(image_tensor, video_target_tensor, labels_v, selected_s, chunk_size)
edited_image = animated_video[:,:,0,:,:]
# postprocessing
animated_video = vid_postprocessing(animated_video, w, h, fps)
edited_image = img_postprocessing(edited_image, w, h)
return edited_image, animated_video
def clear_media():
return None, None, *([0] * len(labels_k))
with gr.Tab("Image Animation"):
inputs_s = []
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
with gr.Accordion(open=True, label="Source Image"):
image_input = gr.Image(type="filepath", elem_id="input_img", width=512) # , height=550)
gr.Examples(
examples=[
["./data/source/macron.png"],
["./data/source/einstein.png"],
["./data/source/taylor.png"],
["./data/source/portrait1.png"],
["./data/source/portrait2.png"],
["./data/source/portrait3.png"],
],
inputs=[image_input],
visible=True,
)
with gr.Accordion(open=True, label="Driving Video"):
video_input = gr.Video(width=512, elem_id="input_vid",) # , height=550)
gr.Examples(
examples=[
["./data/driving/driving6.mp4"],
["./data/driving/driving1.mp4"],
["./data/driving/driving2.mp4"],
["./data/driving/driving4.mp4"],
["./data/driving/driving8.mp4"],
],
inputs=[video_input],
visible=True,
)
with gr.Row():
with gr.Column(scale=1):
with gr.Row(): # Buttons now within a single Row
edit_btn = gr.Button("Edit", elem_id="button_edit",)
clear_btn = gr.Button("Clear", elem_id="button_clear")
with gr.Row():
animate_btn = gr.Button("Animate", elem_id="button_animate")
with gr.Column(scale=1):
with gr.Row():
with gr.Accordion(open=True, label="Edited Source Image"):
#image_output.render()
image_output = gr.Image(label="Output Image", elem_id="output_img", type='numpy', interactive=False, width=512)#.render()
with gr.Accordion(open=True, label="Animated Video"):
#video_output.render()
video_output = gr.Video(label="Output Video", elem_id="output_vid", width=512)#.render()
with gr.Accordion("Control Panel", open=True):
with gr.Tab("Head"):
with gr.Row():
for k in labels_k[:3]:
slider = gr.Slider(minimum=-1.0, maximum=0.5, value=0, label=k, elem_id="slider_"+str(k))
inputs_s.append(slider)
with gr.Row():
for k in labels_k[3:6]:
slider = gr.Slider(minimum=-0.5, maximum=0.5, value=0, label=k, elem_id="slider_"+str(k))
inputs_s.append(slider)
with gr.Tab("Mouth"):
with gr.Row():
for k in labels_k[6:8]:
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k, elem_id="slider_"+str(k))
inputs_s.append(slider)
with gr.Row():
for k in labels_k[8:10]:
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k, elem_id="slider_"+str(k))
inputs_s.append(slider)
with gr.Tab("Eyes"):
with gr.Row():
for k in labels_k[10:12]:
slider = gr.Slider(minimum=-0.4, maximum=0.4, value=0, label=k, elem_id="slider_"+str(k))
inputs_s.append(slider)
with gr.Row():
for k in labels_k[12:14]:
slider = gr.Slider(minimum=-0.2, maximum=0.2, value=0, label=k, elem_id="slider_"+str(k))
inputs_s.append(slider)
edit_btn.click(
fn=edit_media,
inputs=[image_input] + inputs_s,
outputs=[image_output],
show_progress=True
)
animate_btn.click(
fn=animate_media,
inputs=[image_input, video_input] + inputs_s,
outputs=[image_output, video_output],
show_progress=True
)
clear_btn.click(
fn=clear_media,
outputs=[image_output, video_output] + inputs_s
)
gr.Examples(
examples=[
['./data/source/macron.png', './data/driving/driving6.mp4',-0.37,-0.34,0,0,0,0,0,0,0,0,0,0,0,0],
['./data/source/taylor.png', './data/driving/driving6.mp4', -0.31, -0.2, 0, -0.26, -0.14, 0, 0.068, 0.131, 0, 0, 0,
0, -0.058, 0.087],
['./data/source/macron.png', './data/driving/driving1.mp4', 0.14,0,-0.26,-0.29,-0.11,0,-0.13,-0.18,0,0,0,0,-0.02,0.07],
['./data/source/portrait3.png', './data/driving/driving1.mp4', -0.03,0.21,-0.31,-0.12,-0.11,0,-0.05,-0.16,0,0,0,0,-0.02,0.07],
['./data/source/einstein.png','./data/driving/driving2.mp4',-0.31,0,0,0.16,0.08,0,-0.07,0,0.13,0,0,0,0,0],
['./data/source/portrait1.png', './data/driving/driving4.mp4', 0, 0, -0.17, -0.19, 0.25, 0, 0, -0.086,
0.087, 0, 0, 0, 0, 0],
['./data/source/portrait2.png','./data/driving/driving8.mp4',0,0,-0.25,0,0,0,0,0,0,0.126,0,0,0,0],
],
fn=animate_media,
inputs=[image_input, video_input] + inputs_s,
outputs=[image_output, video_output],
)
|