Spaces:
Sleeping
Sleeping
import streamlit as st | |
from ocr_processor import OCRProcessor | |
import tempfile | |
import os | |
from PIL import Image | |
import json | |
# Page configuration | |
st.set_page_config( | |
page_title="OCR Hub", | |
page_icon="๐", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
# Custom CSS for better UI | |
st.markdown(""" | |
<style> | |
.stApp { | |
max-width: 100%; | |
padding: 1rem; | |
} | |
.main { | |
background-color: #f8f9fa; | |
} | |
.stButton button { | |
width: 100%; | |
border-radius: 5px; | |
height: 3em; | |
background-color: #4CAF50; | |
color: white; | |
} | |
.stSelectbox { | |
margin-bottom: 1rem; | |
} | |
.upload-text { | |
text-align: center; | |
padding: 2rem; | |
border: 2px dashed #ccc; | |
border-radius: 10px; | |
background-color: #ffffff; | |
} | |
.stImage { | |
border-radius: 10px; | |
box-shadow: 0 2px 4px rgba(0,0,0,0.1); | |
} | |
.gallery { | |
display: grid; | |
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr)); | |
gap: 1rem; | |
padding: 1rem; | |
} | |
.gallery-item { | |
border: 1px solid #ddd; | |
border-radius: 8px; | |
padding: 0.5rem; | |
background: white; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
def get_available_models(): | |
return ["llava:7b", "MiniCPM-V","llama3.2-vision:11b"] | |
def process_single_image(processor, image_path, format_type, enable_preprocessing): | |
"""Process a single image and return the result""" | |
try: | |
result = processor.process_image( | |
image_path=image_path, | |
format_type=format_type, | |
preprocess=enable_preprocessing | |
) | |
return result | |
except Exception as e: | |
return f"Error processing image: {str(e)}" | |
def process_batch_images(processor, image_paths, format_type, enable_preprocessing): | |
"""Process multiple images and return results""" | |
try: | |
results = processor.process_batch( | |
input_path=image_paths, | |
format_type=format_type, | |
preprocess=enable_preprocessing | |
) | |
return results | |
except Exception as e: | |
return {"error": str(e)} | |
def main(): | |
st.title("๐ OCR Hub") | |
st.markdown("<p style='text-align: center; color: #666;'>Powered by Ollama Vision Models</p>", unsafe_allow_html=True) | |
# Sidebar controls | |
with st.sidebar: | |
st.header("๐ฎ Controls") | |
selected_model = st.selectbox( | |
"๐ค Select Vision Model", | |
get_available_models(), | |
index=0, | |
) | |
format_type = st.selectbox( | |
"๐ Output Format", | |
["markdown", "text", "json", "structured", "key_value"], | |
help="Choose how you want the extracted text to be formatted" | |
) | |
max_workers = st.slider( | |
"๐ Parallel Processing", | |
min_value=1, | |
max_value=8, | |
value=2, | |
help="Number of images to process in parallel (for batch processing)" | |
) | |
enable_preprocessing = st.checkbox( | |
"๐ Enable Preprocessing", | |
value=True, | |
help="Apply image enhancement and preprocessing" | |
) | |
st.markdown("---") | |
# Model info box | |
if selected_model == "llava:7b": | |
st.info("LLaVA 7B: Efficient vision-language model optimized for real-time processing") | |
elif selected_model == "MiniCPM-V": | |
st.info("MiniCPM-V 2.6: A GPT-4V Level MLLM for Single Image, Multi Image and Video, outperforms GPT-4o mini, Gemini 1.5 Pro and Claude 3.5 Sonnet") | |
else: | |
st.info("Llama 3.2 Vision: Advanced model with high accuracy for complex text extraction") | |
# Initialize OCR Processor | |
processor = OCRProcessor(model_name=selected_model, max_workers=max_workers) | |
# Main content area with tabs | |
tab1, tab2 = st.tabs(["๐ธ Image Processing", "โน๏ธ About"]) | |
with tab1: | |
# File upload area with multiple file support | |
uploaded_files = st.file_uploader( | |
"Drop your images here", | |
type=['png', 'jpg', 'jpeg', 'tiff', 'bmp', 'pdf'], | |
accept_multiple_files=True, | |
help="Supported formats: PNG, JPG, JPEG, TIFF, BMP, PDF" | |
) | |
if uploaded_files: | |
# Create a temporary directory for uploaded files | |
with tempfile.TemporaryDirectory() as temp_dir: | |
image_paths = [] | |
# Save uploaded files and collect paths | |
for uploaded_file in uploaded_files: | |
temp_path = os.path.join(temp_dir, uploaded_file.name) | |
with open(temp_path, "wb") as f: | |
f.write(uploaded_file.getvalue()) | |
image_paths.append(temp_path) | |
# Display images in a gallery | |
st.subheader(f"๐ธ Input Images ({len(uploaded_files)} files)") | |
cols = st.columns(min(len(uploaded_files), 4)) | |
for idx, uploaded_file in enumerate(uploaded_files): | |
with cols[idx % 4]: | |
image = Image.open(uploaded_file) | |
st.image(image, use_container_width=True, caption=uploaded_file.name) | |
# Process button | |
if st.button("๐ Process Images"): | |
with st.spinner("Processing images..."): | |
if len(image_paths) == 1: | |
# Single image processing | |
result = process_single_image( | |
processor, | |
image_paths[0], | |
format_type, | |
enable_preprocessing | |
) | |
st.subheader("๐ Extracted Text") | |
st.markdown(result) | |
# Download button for single result | |
st.download_button( | |
"๐ฅ Download Result", | |
result, | |
file_name=f"ocr_result.{format_type}", | |
mime="text/plain" | |
) | |
else: | |
# Batch processing | |
results = process_batch_images( | |
processor, | |
image_paths, | |
format_type, | |
enable_preprocessing | |
) | |
# Display statistics | |
st.subheader("๐ Processing Statistics") | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.metric("Total Images", results['statistics']['total']) | |
with col2: | |
st.metric("Successful", results['statistics']['successful']) | |
with col3: | |
st.metric("Failed", results['statistics']['failed']) | |
# Display results | |
st.subheader("๐ Extracted Text") | |
for file_path, text in results['results'].items(): | |
with st.expander(f"Result: {os.path.basename(file_path)}"): | |
st.markdown(text) | |
# Display errors if any | |
if results['errors']: | |
st.error("โ ๏ธ Some files had errors:") | |
for file_path, error in results['errors'].items(): | |
st.warning(f"{os.path.basename(file_path)}: {error}") | |
# Download all results as JSON | |
if st.button("๐ฅ Download All Results"): | |
json_results = json.dumps(results, indent=2) | |
st.download_button( | |
"๐ฅ Download Results JSON", | |
json_results, | |
file_name="ocr_results.json", | |
mime="application/json" | |
) | |
with tab2: | |
st.header("About OCR Hub") | |
st.markdown(""" | |
This application uses state-of-the-art vision language models through Ollama to extract text from images. | |
### Features: | |
- ๐ผ๏ธ Support for multiple image formats | |
- ๐ฆ Batch processing capability | |
- ๐ Parallel processing | |
- ๐ Image preprocessing and enhancement | |
- ๐ Multiple output formats | |
- ๐ฅ Easy result download | |
### Models: | |
- **LLaVA 7B**: Efficient vision-language model for real-time processing | |
- **Llama 3.2 Vision**: Advanced model with high accuracy for complex documents | |
- **MiniCPM-V 2.6**: Process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344) | |
""") | |
if __name__ == "__main__": | |
main() |