Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from ocr_processor import OCRProcessor
|
| 3 |
+
import tempfile
|
| 4 |
+
import os
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import json
|
| 7 |
+
|
| 8 |
+
# Page configuration
|
| 9 |
+
st.set_page_config(
|
| 10 |
+
page_title="OCR Hub",
|
| 11 |
+
page_icon="๐",
|
| 12 |
+
layout="wide",
|
| 13 |
+
initial_sidebar_state="expanded"
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# Custom CSS for better UI
|
| 17 |
+
st.markdown("""
|
| 18 |
+
<style>
|
| 19 |
+
.stApp {
|
| 20 |
+
max-width: 100%;
|
| 21 |
+
padding: 1rem;
|
| 22 |
+
}
|
| 23 |
+
.main {
|
| 24 |
+
background-color: #f8f9fa;
|
| 25 |
+
}
|
| 26 |
+
.stButton button {
|
| 27 |
+
width: 100%;
|
| 28 |
+
border-radius: 5px;
|
| 29 |
+
height: 3em;
|
| 30 |
+
background-color: #4CAF50;
|
| 31 |
+
color: white;
|
| 32 |
+
}
|
| 33 |
+
.stSelectbox {
|
| 34 |
+
margin-bottom: 1rem;
|
| 35 |
+
}
|
| 36 |
+
.upload-text {
|
| 37 |
+
text-align: center;
|
| 38 |
+
padding: 2rem;
|
| 39 |
+
border: 2px dashed #ccc;
|
| 40 |
+
border-radius: 10px;
|
| 41 |
+
background-color: #ffffff;
|
| 42 |
+
}
|
| 43 |
+
.stImage {
|
| 44 |
+
border-radius: 10px;
|
| 45 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 46 |
+
}
|
| 47 |
+
.gallery {
|
| 48 |
+
display: grid;
|
| 49 |
+
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
|
| 50 |
+
gap: 1rem;
|
| 51 |
+
padding: 1rem;
|
| 52 |
+
}
|
| 53 |
+
.gallery-item {
|
| 54 |
+
border: 1px solid #ddd;
|
| 55 |
+
border-radius: 8px;
|
| 56 |
+
padding: 0.5rem;
|
| 57 |
+
background: white;
|
| 58 |
+
}
|
| 59 |
+
</style>
|
| 60 |
+
""", unsafe_allow_html=True)
|
| 61 |
+
|
| 62 |
+
def get_available_models():
|
| 63 |
+
return ["llava:7b", "MiniCPM-V","llama3.2-vision:11b"]
|
| 64 |
+
|
| 65 |
+
def process_single_image(processor, image_path, format_type, enable_preprocessing):
|
| 66 |
+
"""Process a single image and return the result"""
|
| 67 |
+
try:
|
| 68 |
+
result = processor.process_image(
|
| 69 |
+
image_path=image_path,
|
| 70 |
+
format_type=format_type,
|
| 71 |
+
preprocess=enable_preprocessing
|
| 72 |
+
)
|
| 73 |
+
return result
|
| 74 |
+
except Exception as e:
|
| 75 |
+
return f"Error processing image: {str(e)}"
|
| 76 |
+
|
| 77 |
+
def process_batch_images(processor, image_paths, format_type, enable_preprocessing):
|
| 78 |
+
"""Process multiple images and return results"""
|
| 79 |
+
try:
|
| 80 |
+
results = processor.process_batch(
|
| 81 |
+
input_path=image_paths,
|
| 82 |
+
format_type=format_type,
|
| 83 |
+
preprocess=enable_preprocessing
|
| 84 |
+
)
|
| 85 |
+
return results
|
| 86 |
+
except Exception as e:
|
| 87 |
+
return {"error": str(e)}
|
| 88 |
+
|
| 89 |
+
def main():
|
| 90 |
+
st.title("๐ OCR Hub")
|
| 91 |
+
st.markdown("<p style='text-align: center; color: #666;'>Powered by Ollama Vision Models</p>", unsafe_allow_html=True)
|
| 92 |
+
|
| 93 |
+
# Sidebar controls
|
| 94 |
+
with st.sidebar:
|
| 95 |
+
st.header("๐ฎ Controls")
|
| 96 |
+
|
| 97 |
+
selected_model = st.selectbox(
|
| 98 |
+
"๐ค Select Vision Model",
|
| 99 |
+
get_available_models(),
|
| 100 |
+
index=0,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
format_type = st.selectbox(
|
| 104 |
+
"๐ Output Format",
|
| 105 |
+
["markdown", "text", "json", "structured", "key_value"],
|
| 106 |
+
help="Choose how you want the extracted text to be formatted"
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
max_workers = st.slider(
|
| 110 |
+
"๐ Parallel Processing",
|
| 111 |
+
min_value=1,
|
| 112 |
+
max_value=8,
|
| 113 |
+
value=2,
|
| 114 |
+
help="Number of images to process in parallel (for batch processing)"
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
enable_preprocessing = st.checkbox(
|
| 118 |
+
"๐ Enable Preprocessing",
|
| 119 |
+
value=True,
|
| 120 |
+
help="Apply image enhancement and preprocessing"
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
st.markdown("---")
|
| 124 |
+
|
| 125 |
+
# Model info box
|
| 126 |
+
if selected_model == "llava:7b":
|
| 127 |
+
st.info("LLaVA 7B: Efficient vision-language model optimized for real-time processing")
|
| 128 |
+
elif selected_model == "MiniCPM-V":
|
| 129 |
+
st.info("MiniCPM-V 2.6: A GPT-4V Level MLLM for Single Image, Multi Image and Video, outperforms GPT-4o mini, Gemini 1.5 Pro and Claude 3.5 Sonnet")
|
| 130 |
+
else:
|
| 131 |
+
st.info("Llama 3.2 Vision: Advanced model with high accuracy for complex text extraction")
|
| 132 |
+
|
| 133 |
+
# Initialize OCR Processor
|
| 134 |
+
processor = OCRProcessor(model_name=selected_model, max_workers=max_workers)
|
| 135 |
+
|
| 136 |
+
# Main content area with tabs
|
| 137 |
+
tab1, tab2 = st.tabs(["๐ธ Image Processing", "โน๏ธ About"])
|
| 138 |
+
|
| 139 |
+
with tab1:
|
| 140 |
+
# File upload area with multiple file support
|
| 141 |
+
uploaded_files = st.file_uploader(
|
| 142 |
+
"Drop your images here",
|
| 143 |
+
type=['png', 'jpg', 'jpeg', 'tiff', 'bmp', 'pdf'],
|
| 144 |
+
accept_multiple_files=True,
|
| 145 |
+
help="Supported formats: PNG, JPG, JPEG, TIFF, BMP, PDF"
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
if uploaded_files:
|
| 149 |
+
# Create a temporary directory for uploaded files
|
| 150 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 151 |
+
image_paths = []
|
| 152 |
+
|
| 153 |
+
# Save uploaded files and collect paths
|
| 154 |
+
for uploaded_file in uploaded_files:
|
| 155 |
+
temp_path = os.path.join(temp_dir, uploaded_file.name)
|
| 156 |
+
with open(temp_path, "wb") as f:
|
| 157 |
+
f.write(uploaded_file.getvalue())
|
| 158 |
+
image_paths.append(temp_path)
|
| 159 |
+
|
| 160 |
+
# Display images in a gallery
|
| 161 |
+
st.subheader(f"๐ธ Input Images ({len(uploaded_files)} files)")
|
| 162 |
+
cols = st.columns(min(len(uploaded_files), 4))
|
| 163 |
+
for idx, uploaded_file in enumerate(uploaded_files):
|
| 164 |
+
with cols[idx % 4]:
|
| 165 |
+
image = Image.open(uploaded_file)
|
| 166 |
+
st.image(image, use_container_width=True, caption=uploaded_file.name)
|
| 167 |
+
|
| 168 |
+
# Process button
|
| 169 |
+
if st.button("๐ Process Images"):
|
| 170 |
+
with st.spinner("Processing images..."):
|
| 171 |
+
if len(image_paths) == 1:
|
| 172 |
+
# Single image processing
|
| 173 |
+
result = process_single_image(
|
| 174 |
+
processor,
|
| 175 |
+
image_paths[0],
|
| 176 |
+
format_type,
|
| 177 |
+
enable_preprocessing
|
| 178 |
+
)
|
| 179 |
+
st.subheader("๐ Extracted Text")
|
| 180 |
+
st.markdown(result)
|
| 181 |
+
|
| 182 |
+
# Download button for single result
|
| 183 |
+
st.download_button(
|
| 184 |
+
"๐ฅ Download Result",
|
| 185 |
+
result,
|
| 186 |
+
file_name=f"ocr_result.{format_type}",
|
| 187 |
+
mime="text/plain"
|
| 188 |
+
)
|
| 189 |
+
else:
|
| 190 |
+
# Batch processing
|
| 191 |
+
results = process_batch_images(
|
| 192 |
+
processor,
|
| 193 |
+
image_paths,
|
| 194 |
+
format_type,
|
| 195 |
+
enable_preprocessing
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# Display statistics
|
| 199 |
+
st.subheader("๐ Processing Statistics")
|
| 200 |
+
col1, col2, col3 = st.columns(3)
|
| 201 |
+
with col1:
|
| 202 |
+
st.metric("Total Images", results['statistics']['total'])
|
| 203 |
+
with col2:
|
| 204 |
+
st.metric("Successful", results['statistics']['successful'])
|
| 205 |
+
with col3:
|
| 206 |
+
st.metric("Failed", results['statistics']['failed'])
|
| 207 |
+
|
| 208 |
+
# Display results
|
| 209 |
+
st.subheader("๐ Extracted Text")
|
| 210 |
+
for file_path, text in results['results'].items():
|
| 211 |
+
with st.expander(f"Result: {os.path.basename(file_path)}"):
|
| 212 |
+
st.markdown(text)
|
| 213 |
+
|
| 214 |
+
# Display errors if any
|
| 215 |
+
if results['errors']:
|
| 216 |
+
st.error("โ ๏ธ Some files had errors:")
|
| 217 |
+
for file_path, error in results['errors'].items():
|
| 218 |
+
st.warning(f"{os.path.basename(file_path)}: {error}")
|
| 219 |
+
|
| 220 |
+
# Download all results as JSON
|
| 221 |
+
if st.button("๐ฅ Download All Results"):
|
| 222 |
+
json_results = json.dumps(results, indent=2)
|
| 223 |
+
st.download_button(
|
| 224 |
+
"๐ฅ Download Results JSON",
|
| 225 |
+
json_results,
|
| 226 |
+
file_name="ocr_results.json",
|
| 227 |
+
mime="application/json"
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
with tab2:
|
| 231 |
+
st.header("About OCR Hub")
|
| 232 |
+
st.markdown("""
|
| 233 |
+
This application uses state-of-the-art vision language models through Ollama to extract text from images.
|
| 234 |
+
|
| 235 |
+
### Features:
|
| 236 |
+
- ๐ผ๏ธ Support for multiple image formats
|
| 237 |
+
- ๐ฆ Batch processing capability
|
| 238 |
+
- ๐ Parallel processing
|
| 239 |
+
- ๐ Image preprocessing and enhancement
|
| 240 |
+
- ๐ Multiple output formats
|
| 241 |
+
- ๐ฅ Easy result download
|
| 242 |
+
|
| 243 |
+
### Models:
|
| 244 |
+
- **LLaVA 7B**: Efficient vision-language model for real-time processing
|
| 245 |
+
- **Llama 3.2 Vision**: Advanced model with high accuracy for complex documents
|
| 246 |
+
- **MiniCPM-V 2.6**: Process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344)
|
| 247 |
+
""")
|
| 248 |
+
|
| 249 |
+
if __name__ == "__main__":
|
| 250 |
+
main()
|