File size: 9,345 Bytes
34bb902
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import streamlit as st
from ocr_processor import OCRProcessor
import tempfile
import os
from PIL import Image
import json

# Page configuration
st.set_page_config(
    page_title="OCR Hub",
    page_icon="๐Ÿ”",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for better UI
st.markdown("""
    <style>
    .stApp {
        max-width: 100%;
        padding: 1rem;
    }
    .main {
        background-color: #f8f9fa;
    }
    .stButton button {
        width: 100%;
        border-radius: 5px;
        height: 3em;
        background-color: #4CAF50;
        color: white;
    }
    .stSelectbox {
        margin-bottom: 1rem;
    }
    .upload-text {
        text-align: center;
        padding: 2rem;
        border: 2px dashed #ccc;
        border-radius: 10px;
        background-color: #ffffff;
    }
    .stImage {
        border-radius: 10px;
        box-shadow: 0 2px 4px rgba(0,0,0,0.1);
    }
    .gallery {
        display: grid;
        grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
        gap: 1rem;
        padding: 1rem;
    }
    .gallery-item {
        border: 1px solid #ddd;
        border-radius: 8px;
        padding: 0.5rem;
        background: white;
    }
    </style>
    """, unsafe_allow_html=True)

def get_available_models():
    return ["llava:7b", "MiniCPM-V","llama3.2-vision:11b"]

def process_single_image(processor, image_path, format_type, enable_preprocessing):
    """Process a single image and return the result"""
    try:
        result = processor.process_image(
            image_path=image_path,
            format_type=format_type,
            preprocess=enable_preprocessing
        )
        return result
    except Exception as e:
        return f"Error processing image: {str(e)}"

def process_batch_images(processor, image_paths, format_type, enable_preprocessing):
    """Process multiple images and return results"""
    try:
        results = processor.process_batch(
            input_path=image_paths,
            format_type=format_type,
            preprocess=enable_preprocessing
        )
        return results
    except Exception as e:
        return {"error": str(e)}

def main():
    st.title("๐Ÿ” OCR Hub")
    st.markdown("<p style='text-align: center; color: #666;'>Powered by Ollama Vision Models</p>", unsafe_allow_html=True)

    # Sidebar controls
    with st.sidebar:
        st.header("๐ŸŽฎ Controls")
        
        selected_model = st.selectbox(
            "๐Ÿค– Select Vision Model",
            get_available_models(),
            index=0,
        )
        
        format_type = st.selectbox(
            "๐Ÿ“„ Output Format",
            ["markdown", "text", "json", "structured", "key_value"],
            help="Choose how you want the extracted text to be formatted"
        )

        max_workers = st.slider(
            "๐Ÿ”„ Parallel Processing",
            min_value=1,
            max_value=8,
            value=2,
            help="Number of images to process in parallel (for batch processing)"
        )

        enable_preprocessing = st.checkbox(
            "๐Ÿ” Enable Preprocessing",
            value=True,
            help="Apply image enhancement and preprocessing"
        )
        
        st.markdown("---")
        
        # Model info box
        if selected_model == "llava:7b":
            st.info("LLaVA 7B: Efficient vision-language model optimized for real-time processing")
        elif selected_model == "MiniCPM-V":
            st.info("MiniCPM-V 2.6: A GPT-4V Level MLLM for Single Image, Multi Image and Video, outperforms GPT-4o mini, Gemini 1.5 Pro and Claude 3.5 Sonnet")
        else:
            st.info("Llama 3.2 Vision: Advanced model with high accuracy for complex text extraction")

    # Initialize OCR Processor
    processor = OCRProcessor(model_name=selected_model, max_workers=max_workers)

    # Main content area with tabs
    tab1, tab2 = st.tabs(["๐Ÿ“ธ Image Processing", "โ„น๏ธ About"])
    
    with tab1:
        # File upload area with multiple file support
        uploaded_files = st.file_uploader(
            "Drop your images here",
            type=['png', 'jpg', 'jpeg', 'tiff', 'bmp', 'pdf'],
            accept_multiple_files=True,
            help="Supported formats: PNG, JPG, JPEG, TIFF, BMP, PDF"
        )

        if uploaded_files:
            # Create a temporary directory for uploaded files
            with tempfile.TemporaryDirectory() as temp_dir:
                image_paths = []
                
                # Save uploaded files and collect paths
                for uploaded_file in uploaded_files:
                    temp_path = os.path.join(temp_dir, uploaded_file.name)
                    with open(temp_path, "wb") as f:
                        f.write(uploaded_file.getvalue())
                    image_paths.append(temp_path)

                # Display images in a gallery
                st.subheader(f"๐Ÿ“ธ Input Images ({len(uploaded_files)} files)")
                cols = st.columns(min(len(uploaded_files), 4))
                for idx, uploaded_file in enumerate(uploaded_files):
                    with cols[idx % 4]:
                        image = Image.open(uploaded_file)
                        st.image(image, use_container_width=True, caption=uploaded_file.name)

                # Process button
                if st.button("๐Ÿš€ Process Images"):
                    with st.spinner("Processing images..."):
                        if len(image_paths) == 1:
                            # Single image processing
                            result = process_single_image(
                                processor, 
                                image_paths[0], 
                                format_type,
                                enable_preprocessing
                            )
                            st.subheader("๐Ÿ“ Extracted Text")
                            st.markdown(result)
                            
                            # Download button for single result
                            st.download_button(
                                "๐Ÿ“ฅ Download Result",
                                result,
                                file_name=f"ocr_result.{format_type}",
                                mime="text/plain"
                            )
                        else:
                            # Batch processing
                            results = process_batch_images(
                                processor,
                                image_paths,
                                format_type,
                                enable_preprocessing
                            )
                            
                            # Display statistics
                            st.subheader("๐Ÿ“Š Processing Statistics")
                            col1, col2, col3 = st.columns(3)
                            with col1:
                                st.metric("Total Images", results['statistics']['total'])
                            with col2:
                                st.metric("Successful", results['statistics']['successful'])
                            with col3:
                                st.metric("Failed", results['statistics']['failed'])

                            # Display results
                            st.subheader("๐Ÿ“ Extracted Text")
                            for file_path, text in results['results'].items():
                                with st.expander(f"Result: {os.path.basename(file_path)}"):
                                    st.markdown(text)

                            # Display errors if any
                            if results['errors']:
                                st.error("โš ๏ธ Some files had errors:")
                                for file_path, error in results['errors'].items():
                                    st.warning(f"{os.path.basename(file_path)}: {error}")

                            # Download all results as JSON
                            if st.button("๐Ÿ“ฅ Download All Results"):
                                json_results = json.dumps(results, indent=2)
                                st.download_button(
                                    "๐Ÿ“ฅ Download Results JSON",
                                    json_results,
                                    file_name="ocr_results.json",
                                    mime="application/json"
                                )

    with tab2:
        st.header("About OCR Hub")
        st.markdown("""
        This application uses state-of-the-art vision language models through Ollama to extract text from images.
        
        ### Features:
        - ๐Ÿ–ผ๏ธ Support for multiple image formats
        - ๐Ÿ“ฆ Batch processing capability
        - ๐Ÿ”„ Parallel processing
        - ๐Ÿ” Image preprocessing and enhancement
        - ๐Ÿ“Š Multiple output formats
        - ๐Ÿ“ฅ Easy result download
        
        ### Models:
        - **LLaVA 7B**: Efficient vision-language model for real-time processing
        - **Llama 3.2 Vision**: Advanced model with high accuracy for complex documents
        - **MiniCPM-V 2.6**: Process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344)
        """)

if __name__ == "__main__":
    main()