Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from spaces import GPU | |
import logging | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Load model & tokenizer | |
MODEL_NAME = "ubiodee/Test_Plutus" | |
try: | |
logger.info("Loading tokenizer with use_fast=False...") | |
tokenizer = AutoTokenizer.from_pretrained( | |
MODEL_NAME, | |
use_fast=False, # Use slow tokenizer to avoid fast tokenizer errors | |
use_safetensors=True, | |
trust_remote_code=True, # Allow custom tokenizer code | |
) | |
logger.info("Tokenizer loaded successfully.") | |
except Exception as e: | |
logger.error(f"Tokenizer loading failed: {str(e)}") | |
raise | |
try: | |
logger.info("Loading model with 8-bit quantization...") | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
device_map="auto", # Automatically map to GPU/CPU | |
load_in_8bit=True, # Use 8-bit quantization to match model | |
torch_dtype=torch.bfloat16, # Use bfloat16 for efficiency | |
use_safetensors=True, | |
low_cpu_mem_usage=True, # Reduce CPU memory during loading | |
trust_remote_code=True, # Allow custom model code | |
) | |
model.eval() | |
logger.info("Model loaded successfully.") | |
except Exception as e: | |
logger.error(f"Model loading failed: {str(e)}") | |
raise | |
# Set pad token if not defined | |
if tokenizer.pad_token_id is None: | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
logger.info("Set pad_token_id to eos_token_id.") | |
# Move model to GPU if available | |
if torch.cuda.is_available(): | |
model.to("cuda") | |
logger.info("Model moved to GPU.") | |
else: | |
logger.warning("No GPU available, using CPU.") | |
# Response function with GPU decorator | |
def generate_response(prompt, progress=gr.Progress()): | |
progress(0.1, desc="Tokenizing input...") | |
try: | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
progress(0.5, desc="Generating response...") | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=200, | |
temperature=0.7, | |
top_p=0.9, | |
do_sample=True, | |
eos_token_id=tokenizer.eos_token_id, | |
pad_token_id=tokenizer.pad_token_id, | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Remove the prompt from the output | |
if response.startswith(prompt): | |
response = response[len(prompt):].strip() | |
progress(1.0, desc="Done!") | |
return response | |
except Exception as e: | |
logger.error(f"Inference failed: {str(e)}") | |
return f"Error during generation: {str(e)}" | |
# Gradio UI | |
demo = gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask about Plutus..."), | |
outputs=gr.Textbox(label="Model Response"), | |
title="Cardano Plutus AI Assistant", | |
description="Write Plutus smart contracts on Cardano blockchain." | |
) | |
# Launch with queueing | |
demo.queue(max_size=10).launch(enable_queue=True, max_threads=1) |