import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer from spaces import GPU import logging # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Load model & tokenizer MODEL_NAME = "ubiodee/Test_Plutus" try: logger.info("Loading tokenizer with use_fast=False...") tokenizer = AutoTokenizer.from_pretrained( MODEL_NAME, use_fast=False, # Use slow tokenizer to avoid fast tokenizer errors use_safetensors=True, trust_remote_code=True, # Allow custom tokenizer code ) logger.info("Tokenizer loaded successfully.") except Exception as e: logger.error(f"Tokenizer loading failed: {str(e)}") raise try: logger.info("Loading model with 8-bit quantization...") model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map="auto", # Automatically map to GPU/CPU load_in_8bit=True, # Use 8-bit quantization to match model torch_dtype=torch.bfloat16, # Use bfloat16 for efficiency use_safetensors=True, low_cpu_mem_usage=True, # Reduce CPU memory during loading trust_remote_code=True, # Allow custom model code ) model.eval() logger.info("Model loaded successfully.") except Exception as e: logger.error(f"Model loading failed: {str(e)}") raise # Set pad token if not defined if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id logger.info("Set pad_token_id to eos_token_id.") # Move model to GPU if available if torch.cuda.is_available(): model.to("cuda") logger.info("Model moved to GPU.") else: logger.warning("No GPU available, using CPU.") # Response function with GPU decorator @spaces.GPU def generate_response(prompt, progress=gr.Progress()): progress(0.1, desc="Tokenizing input...") try: inputs = tokenizer(prompt, return_tensors="pt").to(model.device) progress(0.5, desc="Generating response...") with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=200, temperature=0.7, top_p=0.9, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Remove the prompt from the output if response.startswith(prompt): response = response[len(prompt):].strip() progress(1.0, desc="Done!") return response except Exception as e: logger.error(f"Inference failed: {str(e)}") return f"Error during generation: {str(e)}" # Gradio UI demo = gr.Interface( fn=generate_response, inputs=gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask about Plutus..."), outputs=gr.Textbox(label="Model Response"), title="Cardano Plutus AI Assistant", description="Write Plutus smart contracts on Cardano blockchain." ) # Launch with queueing demo.queue(max_size=10).launch(enable_queue=True, max_threads=1)