Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,87 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
-
from spaces import GPU
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Load model & tokenizer
|
7 |
MODEL_NAME = "ubiodee/Test_Plutus"
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Set pad token if not defined
|
14 |
if tokenizer.pad_token_id is None:
|
15 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
|
16 |
|
|
|
17 |
if torch.cuda.is_available():
|
18 |
model.to("cuda")
|
|
|
|
|
|
|
19 |
|
20 |
# Response function with GPU decorator
|
21 |
@spaces.GPU
|
22 |
-
def generate_response(prompt):
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# Gradio UI
|
44 |
demo = gr.Interface(
|
@@ -49,5 +92,5 @@ demo = gr.Interface(
|
|
49 |
description="Write Plutus smart contracts on Cardano blockchain."
|
50 |
)
|
51 |
|
52 |
-
# Launch with queueing
|
53 |
-
demo.queue().launch(enable_queue=True, max_threads=1)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from spaces import GPU
|
5 |
+
import logging
|
6 |
+
|
7 |
+
# Set up logging
|
8 |
+
logging.basicConfig(level=logging.INFO)
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
|
11 |
# Load model & tokenizer
|
12 |
MODEL_NAME = "ubiodee/Test_Plutus"
|
13 |
|
14 |
+
try:
|
15 |
+
logger.info("Loading tokenizer with use_fast=False...")
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
17 |
+
MODEL_NAME,
|
18 |
+
use_fast=False, # Use slow tokenizer to avoid fast tokenizer errors
|
19 |
+
use_safetensors=True,
|
20 |
+
trust_remote_code=True, # Allow custom tokenizer code
|
21 |
+
)
|
22 |
+
logger.info("Tokenizer loaded successfully.")
|
23 |
+
except Exception as e:
|
24 |
+
logger.error(f"Tokenizer loading failed: {str(e)}")
|
25 |
+
raise
|
26 |
+
|
27 |
+
try:
|
28 |
+
logger.info("Loading model with 8-bit quantization...")
|
29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
30 |
+
MODEL_NAME,
|
31 |
+
device_map="auto", # Automatically map to GPU/CPU
|
32 |
+
load_in_8bit=True, # Use 8-bit quantization to match model
|
33 |
+
torch_dtype=torch.bfloat16, # Use bfloat16 for efficiency
|
34 |
+
use_safetensors=True,
|
35 |
+
low_cpu_mem_usage=True, # Reduce CPU memory during loading
|
36 |
+
trust_remote_code=True, # Allow custom model code
|
37 |
+
)
|
38 |
+
model.eval()
|
39 |
+
logger.info("Model loaded successfully.")
|
40 |
+
except Exception as e:
|
41 |
+
logger.error(f"Model loading failed: {str(e)}")
|
42 |
+
raise
|
43 |
|
44 |
# Set pad token if not defined
|
45 |
if tokenizer.pad_token_id is None:
|
46 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
47 |
+
logger.info("Set pad_token_id to eos_token_id.")
|
48 |
|
49 |
+
# Move model to GPU if available
|
50 |
if torch.cuda.is_available():
|
51 |
model.to("cuda")
|
52 |
+
logger.info("Model moved to GPU.")
|
53 |
+
else:
|
54 |
+
logger.warning("No GPU available, using CPU.")
|
55 |
|
56 |
# Response function with GPU decorator
|
57 |
@spaces.GPU
|
58 |
+
def generate_response(prompt, progress=gr.Progress()):
|
59 |
+
progress(0.1, desc="Tokenizing input...")
|
60 |
+
try:
|
61 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
62 |
+
|
63 |
+
progress(0.5, desc="Generating response...")
|
64 |
+
with torch.no_grad():
|
65 |
+
outputs = model.generate(
|
66 |
+
**inputs,
|
67 |
+
max_new_tokens=200,
|
68 |
+
temperature=0.7,
|
69 |
+
top_p=0.9,
|
70 |
+
do_sample=True,
|
71 |
+
eos_token_id=tokenizer.eos_token_id,
|
72 |
+
pad_token_id=tokenizer.pad_token_id,
|
73 |
+
)
|
74 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
75 |
+
|
76 |
+
# Remove the prompt from the output
|
77 |
+
if response.startswith(prompt):
|
78 |
+
response = response[len(prompt):].strip()
|
79 |
+
|
80 |
+
progress(1.0, desc="Done!")
|
81 |
+
return response
|
82 |
+
except Exception as e:
|
83 |
+
logger.error(f"Inference failed: {str(e)}")
|
84 |
+
return f"Error during generation: {str(e)}"
|
85 |
|
86 |
# Gradio UI
|
87 |
demo = gr.Interface(
|
|
|
92 |
description="Write Plutus smart contracts on Cardano blockchain."
|
93 |
)
|
94 |
|
95 |
+
# Launch with queueing
|
96 |
+
demo.queue(max_size=10).launch(enable_queue=True, max_threads=1)
|