File size: 4,995 Bytes
886f105
7d40369
6bcec5f
9461fdc
 
 
 
 
 
 
 
e8ea8da
9461fdc
7d40369
 
9461fdc
7d40369
9461fdc
072be42
 
 
 
40e3650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9461fdc
 
40e3650
 
 
 
 
 
 
 
 
 
 
9461fdc
 
 
 
40e3650
a0e45a8
9461fdc
8f2de47
e8ea8da
7d40369
 
7054a36
9461fdc
 
e8ea8da
9461fdc
7054a36
99d1063
 
7054a36
920ac22
cdd3493
 
 
 
 
 
 
 
920ac22
7d40369
 
 
072be42
7d40369
99d1063
7d40369
cdd3493
920ac22
e8ea8da
 
 
 
072be42
e8ea8da
cdd3493
 
7d40369
 
 
 
cdd3493
e8ea8da
cdd3493
920ac22
e8ea8da
 
 
072be42
7d40369
9461fdc
7d40369
 
886f105
b4bf7d7
71c5d37
fbcf80b
71c5d37
 
 
b4bf7d7
71c5d37
cc32d9c
 
 
 
 
 
cdd3493
71c5d37
 
 
 
9461fdc
 
7d40369
9461fdc
7d40369
 
 
9461fdc
 
 
 
 
7d40369
b4bf7d7
7d40369
 
 
9461fdc
7d40369
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import spaces
import torch
from inspect import signature
from diffusers import (
    FluxPipeline,
    StableDiffusion3Pipeline,
    PixArtSigmaPipeline,
    SanaPipeline,
    AuraFlowPipeline,
    Kandinsky3Pipeline,
    HunyuanDiTPipeline,
    LuminaText2ImgPipeline,AutoPipelineForText2Image
)
import gradio as gr

cache_dir = '/workspace/hf_cache'

MODEL_CONFIGS = {
        "FLUX": {
        "repo_id": "black-forest-labs/FLUX.1-dev",
        "pipeline_class": FluxPipeline,
    },
    "Stable Diffusion 3.5": {
        "repo_id": "stabilityai/stable-diffusion-3.5-large",
        "pipeline_class": StableDiffusion3Pipeline,
         
    },
    "PixArt": {
        "repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
        "pipeline_class": PixArtSigmaPipeline,
        
    },
    "SANA": {
        "repo_id": "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
        "pipeline_class": SanaPipeline,
         
    },
    "AuraFlow": {
        "repo_id": "fal/AuraFlow",
        "pipeline_class": AuraFlowPipeline,
         
    },
    "Kandinsky": {
        "repo_id": "kandinsky-community/kandinsky-3",
        "pipeline_class": Kandinsky3Pipeline,
        
    },
    "Hunyuan": {
        "repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers",
        "pipeline_class": HunyuanDiTPipeline,
         
    },
    "Lumina": {
        "repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
        "pipeline_class": LuminaText2ImgPipeline,
         
    }
}

def generate_image_with_progress(pipe, prompt, num_steps, guidance_scale=None, seed=None, progress=gr.Progress(track_tqdm=True)):
    generator = None
    if seed is not None:
        generator = torch.Generator("cuda").manual_seed(seed)

    def callback(pipe, step_index, timestep, callback_kwargs):
        print(f" callback => {step_index}, {timestep}")
        if step_index is None:
            step_index = 0
        cur_prg = step_index / num_steps
        progress(cur_prg, desc=f"Step {step_index}/{num_steps}")
        return callback_kwargs
    print(f"START GENR ")
    # Get the signature of the pipe
    pipe_signature = signature(pipe)
    
    # Check for the presence of "guidance_scale" and "callback_on_step_end" in the signature
    has_guidance_scale = "guidance_scale" in pipe_signature.parameters
    has_callback_on_step_end = "callback_on_step_end" in pipe_signature.parameters
    
    if has_guidance_scale and has_callback_on_step_end:
        print("has callback_on_step_end and has guidance_scale")
        image = pipe(
            prompt,
            num_inference_steps=num_steps,
            generator=generator,
            guidance_scale=guidance_scale,
            callback_on_step_end=callback,
        ).images[0]
    elif not has_callback_on_step_end and has_guidance_scale:
        print("NO callback_on_step_end and has guidance_scale")
        image = pipe(
            prompt,
            num_inference_steps=num_steps,
            guidance_scale=guidance_scale,
            generator=generator,
        ).images[0]
    elif has_callback_on_step_end and not has_guidance_scale:
        print("has callback_on_step_end and NO guidance_scale")
        image = pipe(
            prompt,
            num_inference_steps=num_steps,
            generator=generator,
            callback_on_step_end=callback,
        ).images[0]
    elif not has_callback_on_step_end and not has_guidance_scale:
        print("NO callback_on_step_end and NO guidance_scale")
        image = pipe(
            prompt,
            num_inference_steps=num_steps,
            generator=generator,
        ).images[0]

    return image

@spaces.GPU(duration=170)
def create_pipeline_logic(prompt_text, model_name):
    print(f"starting {model_name}")
    progress = gr.Progress(track_tqdm=True)
    num_steps = 30
    guidance_scale = 7.5  # Example guidance scale, can be adjusted per model
    seed = 42
    config = MODEL_CONFIGS[model_name]
    pipe_class = config["pipeline_class"]
    pipe = AutoPipelineForText2Image.from_pretrained(
        config["repo_id"],
        variant="fp16",
        #cache_dir=config["cache_dir"],
        torch_dtype=torch.bfloat16
    ).to("cuda")
        
    image = generate_image_with_progress(
        pipe, prompt_text, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, progress=progress
    )
    return f"Seed: {seed}", image

def main():
    with gr.Blocks() as app:
        gr.Markdown("# Dynamic Multiple Model Image Generation")

        prompt_text = gr.Textbox(label="Enter prompt")

        for model_name, config in MODEL_CONFIGS.items():
            with gr.Tab(model_name):
                button = gr.Button(f"Run {model_name}")
                output = gr.Textbox(label="Status")
                img = gr.Image(label=model_name, height=300)

                button.click(fn=create_pipeline_logic, inputs=[prompt_text, gr.Text(value= model_name,visible=False)], outputs=[output, img])

    app.launch()


if __name__ == "__main__":
    main()