File size: 7,022 Bytes
038f313
fab24df
c5a20a4
038f313
880ced6
e13eb1b
038f313
 
 
 
 
e13eb1b
038f313
c58c098
038f313
27c8b8d
 
 
038f313
 
 
3a64d68
98674ca
c5a20a4
038f313
878aff7
27c8b8d
 
 
 
 
be3f346
f7c4208
901bafe
52ad57a
 
038f313
c5a20a4
901bafe
 
 
27c8b8d
a05c183
 
27c8b8d
30153c5
901bafe
27c8b8d
30153c5
901bafe
27c8b8d
901bafe
27c8b8d
901bafe
27c8b8d
901bafe
c5a20a4
901bafe
 
 
a8fc89d
901bafe
27c8b8d
 
30153c5
 
 
 
 
 
 
 
27c8b8d
 
901bafe
a8fc89d
 
542c2ac
901bafe
 
b0cbd1c
f7c4208
b0cbd1c
901bafe
a8fc89d
b0cbd1c
901bafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0cbd1c
901bafe
 
 
a05c183
878aff7
901bafe
a8fc89d
b0cbd1c
 
 
 
 
 
 
 
a8fc89d
30153c5
a8fc89d
30153c5
 
 
 
 
 
b0cbd1c
a8fc89d
30153c5
 
 
901bafe
6ee17e0
901bafe
a8fc89d
a05c183
b0cbd1c
69de3d2
 
 
 
b0cbd1c
 
69de3d2
b0cbd1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8fc89d
 
30153c5
 
 
 
a8fc89d
901bafe
a8fc89d
b0cbd1c
 
 
 
 
 
a8fc89d
30153c5
 
 
a8fc89d
901bafe
a8fc89d
 
30153c5
 
 
a8fc89d
901bafe
a8fc89d
be3f346
769901b
77298b9
27c8b8d
391cae3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import gradio as gr
from openai import OpenAI
import os

ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    custom_model
):

    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Selected model (custom_model): {custom_model}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    messages = [{"role": "system", "content": system_message}]
    print("Initial messages array constructed.")

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})
    print("Latest user message appended.")

    # If user provided a model, use that; otherwise, fall back to a default model
    model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
    print(f"Model selected for inference: {model_to_use}")

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print("Sending request to OpenAI API.")

    for message_chunk in client.chat.completions.create(
        model=model_to_use,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,
        seed=seed,
        messages=messages,
    ):
        token_text = message_chunk.choices[0].delta.content
        print(f"Received token: {token_text}")
        response += token_text
        yield response

    print("Completed response generation.")

# GRADIO UI

chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", likeable=True, layout="panel")
print("Chatbot interface created.")

system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")

max_tokens_slider = gr.Slider(
    minimum=1,
    maximum=4096,
    value=512,
    step=1,
    label="Max new tokens"
)
temperature_slider = gr.Slider(
    minimum=0.1,
    maximum=4.0,
    value=0.7,
    step=0.1,
    label="Temperature"
)
top_p_slider = gr.Slider(
    minimum=0.1,
    maximum=1.0,
    value=0.95,
    step=0.05,
    label="Top-P"
)
frequency_penalty_slider = gr.Slider(
    minimum=-2.0,
    maximum=2.0,
    value=0.0,
    step=0.1,
    label="Frequency Penalty"
)
seed_slider = gr.Slider(
    minimum=-1,
    maximum=65535,
    value=-1,
    step=1,
    label="Seed (-1 for random)"
)

# Move the custom_model_box definition to be used inside the accordion
custom_model_box = gr.Textbox(
    value="",
    label="Custom Model",
    info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
    placeholder="meta-llama/Llama-3.3-70B-Instruct"
)

def set_custom_model_from_radio(selected):
    """
    This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
    We will update the Custom Model text box with that selection automatically.
    """
    print(f"Featured model selected: {selected}")
    return selected

demo = gr.ChatInterface(
    fn=respond,
    additional_inputs=[
        system_message_box,
        max_tokens_slider,
        temperature_slider,
        top_p_slider,
        frequency_penalty_slider,
        seed_slider,
        custom_model_box,  # Keep this reference here for the respond function
    ],
    fill_height=True,
    chatbot=chatbot,
    theme="Nymbo/Nymbo_Theme",
)
print("ChatInterface object created.")

with demo:
    with gr.Accordion("Model Selection", open=False):
        # Create a row for the search and custom model inputs
        with gr.Row():
            model_search_box = gr.Textbox(
                label="Filter Models",
                placeholder="Search for a featured model...",
                lines=1,
                scale=1  # Equal scaling with custom_model_box
            )
            # Place the custom model box here, alongside the search box
            custom_model_box.render()  # Render the previously defined textbox here
        print("Model search box and custom model box created.")

        models_list = [
            "meta-llama/Llama-3.3-70B-Instruct",
            "meta-llama/Llama-3.2-3B-Instruct",
            "meta-llama/Llama-3.2-1B-Instruct",
            "meta-llama/Llama-3.1-8B-Instruct",
            "NousResearch/Hermes-3-Llama-3.1-8B",
            "google/gemma-2-27b-it",
            "google/gemma-2-9b-it",
            "google/gemma-2-2b-it",
            "mistralai/Mistral-Nemo-Instruct-2407",
            "mistralai/Mixtral-8x7B-Instruct-v0.1",
            "mistralai/Mistral-7B-Instruct-v0.3",
            "Qwen/Qwen2.5-72B-Instruct",
            "Qwen/QwQ-32B-Preview",
            "PowerInfer/SmallThinker-3B-Preview",
            "HuggingFaceTB/SmolLM2-1.7B-Instruct",
            "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
            "microsoft/Phi-3.5-mini-instruct",
        ]
        print("Models list initialized.")

        featured_model_radio = gr.Radio(
            label="Select a model below",
            choices=models_list,
            value="meta-llama/Llama-3.3-70B-Instruct",
            interactive=True
        )
        print("Featured models radio button created.")

        def filter_models(search_term):
            print(f"Filtering models with search term: {search_term}")
            filtered = [m for m in models_list if search_term.lower() in m.lower()]
            print(f"Filtered models: {filtered}")
            return gr.update(choices=filtered)

        model_search_box.change(
            fn=filter_models,
            inputs=model_search_box,
            outputs=featured_model_radio
        )
        print("Model search box change event linked.")

        featured_model_radio.change(
            fn=set_custom_model_from_radio,
            inputs=featured_model_radio,
            outputs=custom_model_box
        )
        print("Featured model radio button change event linked.")

print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch()