Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -23,15 +23,7 @@ def respond(
|
|
23 |
seed,
|
24 |
custom_model
|
25 |
):
|
26 |
-
"""
|
27 |
-
This function handles the conversation logic and streams the response.
|
28 |
|
29 |
-
Arguments:
|
30 |
-
- message: The new user message
|
31 |
-
- history: Chat history in the form of a list of (user_message, assistant_message) pairs
|
32 |
-
- system_message: The system prompt specifying how the assistant should behave
|
33 |
-
- max_tokens, temperature, top_p, frequency_penalty, seed, custom_model: Various parameters for text generation
|
34 |
-
"""
|
35 |
print(f"Received message: {message}")
|
36 |
print(f"History: {history}")
|
37 |
print(f"System message: {system_message}")
|
@@ -43,7 +35,6 @@ def respond(
|
|
43 |
if seed == -1:
|
44 |
seed = None
|
45 |
|
46 |
-
# Create the base system-level message
|
47 |
messages = [{"role": "system", "content": system_message}]
|
48 |
print("Initial messages array constructed.")
|
49 |
|
@@ -70,7 +61,6 @@ def respond(
|
|
70 |
response = ""
|
71 |
print("Sending request to OpenAI API.")
|
72 |
|
73 |
-
# Stream tokens from the HF inference endpoint
|
74 |
for message_chunk in client.chat.completions.create(
|
75 |
model=model_to_use,
|
76 |
max_tokens=max_tokens,
|
@@ -88,29 +78,13 @@ def respond(
|
|
88 |
|
89 |
print("Completed response generation.")
|
90 |
|
|
|
91 |
|
92 |
-
|
93 |
-
# Gradio UI definitions
|
94 |
-
# -------------------------
|
95 |
-
|
96 |
-
# Chatbot interface
|
97 |
-
chatbot = gr.Chatbot(
|
98 |
-
height=600,
|
99 |
-
show_copy_button=True,
|
100 |
-
placeholder="Select a model and begin chatting",
|
101 |
-
likeable=True,
|
102 |
-
layout="panel"
|
103 |
-
)
|
104 |
print("Chatbot interface created.")
|
105 |
|
106 |
-
|
107 |
-
system_message_box = gr.Textbox(
|
108 |
-
value="",
|
109 |
-
placeholder="You are a helpful assistant.",
|
110 |
-
label="System Prompt"
|
111 |
-
)
|
112 |
|
113 |
-
# Sliders
|
114 |
max_tokens_slider = gr.Slider(
|
115 |
minimum=1,
|
116 |
maximum=4096,
|
@@ -147,9 +121,7 @@ seed_slider = gr.Slider(
|
|
147 |
label="Seed (-1 for random)"
|
148 |
)
|
149 |
|
150 |
-
#
|
151 |
-
# We will visually place it inside the Model Selection accordion (below),
|
152 |
-
# but we define it here so it can be passed to the ChatInterface.
|
153 |
custom_model_box = gr.Textbox(
|
154 |
value="",
|
155 |
label="Custom Model",
|
@@ -157,7 +129,14 @@ custom_model_box = gr.Textbox(
|
|
157 |
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
158 |
)
|
159 |
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
demo = gr.ChatInterface(
|
162 |
fn=respond,
|
163 |
additional_inputs=[
|
@@ -167,7 +146,7 @@ demo = gr.ChatInterface(
|
|
167 |
top_p_slider,
|
168 |
frequency_penalty_slider,
|
169 |
seed_slider,
|
170 |
-
custom_model_box, #
|
171 |
],
|
172 |
fill_height=True,
|
173 |
chatbot=chatbot,
|
@@ -175,67 +154,41 @@ demo = gr.ChatInterface(
|
|
175 |
)
|
176 |
print("ChatInterface object created.")
|
177 |
|
178 |
-
|
179 |
-
# --------------------------
|
180 |
-
# Additional Model Selection
|
181 |
-
# --------------------------
|
182 |
-
|
183 |
-
# This is the function that updates the Custom Model textbox whenever the user picks a model from the Radio
|
184 |
-
def set_custom_model_from_radio(selected):
|
185 |
-
"""
|
186 |
-
Triggered when the user picks a model from the 'Featured Models' radio.
|
187 |
-
We will update the Custom Model text box with that selection automatically.
|
188 |
-
"""
|
189 |
-
print(f"Featured model selected: {selected}")
|
190 |
-
return selected
|
191 |
-
|
192 |
-
# The set of models displayed in the radio
|
193 |
-
models_list = [
|
194 |
-
"meta-llama/Llama-3.3-70B-Instruct",
|
195 |
-
"meta-llama/Llama-3.2-3B-Instruct",
|
196 |
-
"meta-llama/Llama-3.2-1B-Instruct",
|
197 |
-
"meta-llama/Llama-3.1-8B-Instruct",
|
198 |
-
"NousResearch/Hermes-3-Llama-3.1-8B",
|
199 |
-
"google/gemma-2-27b-it",
|
200 |
-
"google/gemma-2-9b-it",
|
201 |
-
"google/gemma-2-2b-it",
|
202 |
-
"mistralai/Mistral-Nemo-Instruct-2407",
|
203 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
204 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
205 |
-
"Qwen/Qwen2.5-72B-Instruct",
|
206 |
-
"Qwen/QwQ-32B-Preview",
|
207 |
-
"PowerInfer/SmallThinker-3B-Preview",
|
208 |
-
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
209 |
-
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
210 |
-
"microsoft/Phi-3.5-mini-instruct",
|
211 |
-
]
|
212 |
-
print("Models list initialized.")
|
213 |
-
|
214 |
-
# This function handles searching for models by a user-provided filter
|
215 |
-
def filter_models(search_term):
|
216 |
-
print(f"Filtering models with search term: {search_term}")
|
217 |
-
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
218 |
-
print(f"Filtered models: {filtered}")
|
219 |
-
return gr.update(choices=filtered)
|
220 |
-
|
221 |
-
|
222 |
-
# --------------------------------
|
223 |
-
# Advanced UI arrangement with demo
|
224 |
-
# --------------------------------
|
225 |
with demo:
|
226 |
-
# Create an Accordion for model selection
|
227 |
with gr.Accordion("Model Selection", open=False):
|
228 |
-
#
|
229 |
with gr.Row():
|
230 |
model_search_box = gr.Textbox(
|
231 |
label="Filter Models",
|
232 |
placeholder="Search for a featured model...",
|
233 |
-
lines=1
|
|
|
234 |
)
|
235 |
-
#
|
236 |
-
custom_model_box.render()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
-
# Create the Radio for featured models
|
239 |
featured_model_radio = gr.Radio(
|
240 |
label="Select a model below",
|
241 |
choices=models_list,
|
@@ -244,7 +197,12 @@ with demo:
|
|
244 |
)
|
245 |
print("Featured models radio button created.")
|
246 |
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
248 |
model_search_box.change(
|
249 |
fn=filter_models,
|
250 |
inputs=model_search_box,
|
@@ -252,7 +210,6 @@ with demo:
|
|
252 |
)
|
253 |
print("Model search box change event linked.")
|
254 |
|
255 |
-
# Link the radio to the function that sets the custom model textbox
|
256 |
featured_model_radio.change(
|
257 |
fn=set_custom_model_from_radio,
|
258 |
inputs=featured_model_radio,
|
@@ -262,10 +219,6 @@ with demo:
|
|
262 |
|
263 |
print("Gradio interface initialized.")
|
264 |
|
265 |
-
|
266 |
-
# -----------------------
|
267 |
-
# Launch the application
|
268 |
-
# -----------------------
|
269 |
if __name__ == "__main__":
|
270 |
print("Launching the demo application.")
|
271 |
demo.launch()
|
|
|
23 |
seed,
|
24 |
custom_model
|
25 |
):
|
|
|
|
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
print(f"Received message: {message}")
|
28 |
print(f"History: {history}")
|
29 |
print(f"System message: {system_message}")
|
|
|
35 |
if seed == -1:
|
36 |
seed = None
|
37 |
|
|
|
38 |
messages = [{"role": "system", "content": system_message}]
|
39 |
print("Initial messages array constructed.")
|
40 |
|
|
|
61 |
response = ""
|
62 |
print("Sending request to OpenAI API.")
|
63 |
|
|
|
64 |
for message_chunk in client.chat.completions.create(
|
65 |
model=model_to_use,
|
66 |
max_tokens=max_tokens,
|
|
|
78 |
|
79 |
print("Completed response generation.")
|
80 |
|
81 |
+
# GRADIO UI
|
82 |
|
83 |
+
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", likeable=True, layout="panel")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
print("Chatbot interface created.")
|
85 |
|
86 |
+
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
|
|
|
|
|
|
|
|
|
|
|
87 |
|
|
|
88 |
max_tokens_slider = gr.Slider(
|
89 |
minimum=1,
|
90 |
maximum=4096,
|
|
|
121 |
label="Seed (-1 for random)"
|
122 |
)
|
123 |
|
124 |
+
# Move the custom_model_box definition to be used inside the accordion
|
|
|
|
|
125 |
custom_model_box = gr.Textbox(
|
126 |
value="",
|
127 |
label="Custom Model",
|
|
|
129 |
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
130 |
)
|
131 |
|
132 |
+
def set_custom_model_from_radio(selected):
|
133 |
+
"""
|
134 |
+
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
|
135 |
+
We will update the Custom Model text box with that selection automatically.
|
136 |
+
"""
|
137 |
+
print(f"Featured model selected: {selected}")
|
138 |
+
return selected
|
139 |
+
|
140 |
demo = gr.ChatInterface(
|
141 |
fn=respond,
|
142 |
additional_inputs=[
|
|
|
146 |
top_p_slider,
|
147 |
frequency_penalty_slider,
|
148 |
seed_slider,
|
149 |
+
custom_model_box, # Keep this reference here for the respond function
|
150 |
],
|
151 |
fill_height=True,
|
152 |
chatbot=chatbot,
|
|
|
154 |
)
|
155 |
print("ChatInterface object created.")
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
with demo:
|
|
|
158 |
with gr.Accordion("Model Selection", open=False):
|
159 |
+
# Create a row for the search and custom model inputs
|
160 |
with gr.Row():
|
161 |
model_search_box = gr.Textbox(
|
162 |
label="Filter Models",
|
163 |
placeholder="Search for a featured model...",
|
164 |
+
lines=1,
|
165 |
+
scale=1 # Equal scaling with custom_model_box
|
166 |
)
|
167 |
+
# Place the custom model box here, alongside the search box
|
168 |
+
custom_model_box.render() # Render the previously defined textbox here
|
169 |
+
print("Model search box and custom model box created.")
|
170 |
+
|
171 |
+
models_list = [
|
172 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
173 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
174 |
+
"meta-llama/Llama-3.2-1B-Instruct",
|
175 |
+
"meta-llama/Llama-3.1-8B-Instruct",
|
176 |
+
"NousResearch/Hermes-3-Llama-3.1-8B",
|
177 |
+
"google/gemma-2-27b-it",
|
178 |
+
"google/gemma-2-9b-it",
|
179 |
+
"google/gemma-2-2b-it",
|
180 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
181 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
182 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
183 |
+
"Qwen/Qwen2.5-72B-Instruct",
|
184 |
+
"Qwen/QwQ-32B-Preview",
|
185 |
+
"PowerInfer/SmallThinker-3B-Preview",
|
186 |
+
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
187 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
188 |
+
"microsoft/Phi-3.5-mini-instruct",
|
189 |
+
]
|
190 |
+
print("Models list initialized.")
|
191 |
|
|
|
192 |
featured_model_radio = gr.Radio(
|
193 |
label="Select a model below",
|
194 |
choices=models_list,
|
|
|
197 |
)
|
198 |
print("Featured models radio button created.")
|
199 |
|
200 |
+
def filter_models(search_term):
|
201 |
+
print(f"Filtering models with search term: {search_term}")
|
202 |
+
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
203 |
+
print(f"Filtered models: {filtered}")
|
204 |
+
return gr.update(choices=filtered)
|
205 |
+
|
206 |
model_search_box.change(
|
207 |
fn=filter_models,
|
208 |
inputs=model_search_box,
|
|
|
210 |
)
|
211 |
print("Model search box change event linked.")
|
212 |
|
|
|
213 |
featured_model_radio.change(
|
214 |
fn=set_custom_model_from_radio,
|
215 |
inputs=featured_model_radio,
|
|
|
219 |
|
220 |
print("Gradio interface initialized.")
|
221 |
|
|
|
|
|
|
|
|
|
222 |
if __name__ == "__main__":
|
223 |
print("Launching the demo application.")
|
224 |
demo.launch()
|