Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -34,7 +34,7 @@ def respond(
|
|
34 |
- top_p: top-p (nucleus) sampling
|
35 |
- frequency_penalty: penalize repeated tokens in the output
|
36 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
37 |
-
- custom_model: the
|
38 |
"""
|
39 |
|
40 |
print(f"Received message: {message}")
|
@@ -42,7 +42,7 @@ def respond(
|
|
42 |
print(f"System message: {system_message}")
|
43 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
44 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
45 |
-
print(f"
|
46 |
|
47 |
# Convert seed to None if -1 (meaning random)
|
48 |
if seed == -1:
|
@@ -65,7 +65,7 @@ def respond(
|
|
65 |
# Append the latest user message
|
66 |
messages.append({"role": "user", "content": message})
|
67 |
|
68 |
-
#
|
69 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
70 |
print(f"Model selected for inference: {model_to_use}")
|
71 |
|
@@ -75,7 +75,7 @@ def respond(
|
|
75 |
|
76 |
# Make the streaming request to the HF Inference API via openai-like client
|
77 |
for message_chunk in client.chat.completions.create(
|
78 |
-
model=model_to_use, # Use either the user-provided
|
79 |
max_tokens=max_tokens,
|
80 |
stream=True, # Stream the response
|
81 |
temperature=temperature,
|
@@ -93,104 +93,137 @@ def respond(
|
|
93 |
|
94 |
print("Completed response generation.")
|
95 |
|
|
|
|
|
|
|
|
|
96 |
# Create a Chatbot component with a specified height
|
97 |
chatbot = gr.Chatbot(height=600)
|
98 |
print("Chatbot interface created.")
|
99 |
|
100 |
-
#
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
demo = gr.ChatInterface(
|
103 |
fn=respond,
|
|
|
104 |
additional_inputs=[
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
),
|
113 |
-
gr.Slider(
|
114 |
-
minimum=0.1,
|
115 |
-
maximum=4.0,
|
116 |
-
value=0.7,
|
117 |
-
step=0.1,
|
118 |
-
label="Temperature"
|
119 |
-
),
|
120 |
-
gr.Slider(
|
121 |
-
minimum=0.1,
|
122 |
-
maximum=1.0,
|
123 |
-
value=0.95,
|
124 |
-
step=0.05,
|
125 |
-
label="Top-P"
|
126 |
-
),
|
127 |
-
gr.Slider(
|
128 |
-
minimum=-2.0,
|
129 |
-
maximum=2.0,
|
130 |
-
value=0.0,
|
131 |
-
step=0.1,
|
132 |
-
label="Frequency Penalty"
|
133 |
-
),
|
134 |
-
gr.Slider(
|
135 |
-
minimum=-1,
|
136 |
-
maximum=65535,
|
137 |
-
value=-1,
|
138 |
-
step=1,
|
139 |
-
label="Seed (-1 for random)"
|
140 |
-
),
|
141 |
-
gr.Textbox(
|
142 |
-
value="",
|
143 |
-
label="Custom Model",
|
144 |
-
info="(Optional) Provide a custom Hugging Face model path. This will override the default model if not empty."
|
145 |
-
),
|
146 |
],
|
147 |
fill_height=True,
|
148 |
chatbot=chatbot,
|
149 |
theme="Nymbo/Nymbo_Theme",
|
150 |
)
|
151 |
-
print("Gradio interface initialized.")
|
152 |
|
153 |
-
#
|
154 |
-
#
|
155 |
-
#
|
156 |
-
# --------------------------------------------------------
|
157 |
with demo:
|
158 |
with gr.Accordion("Featured Models", open=False):
|
159 |
-
|
160 |
-
model_search = gr.Textbox(
|
161 |
label="Filter Models",
|
162 |
placeholder="Search for a featured model...",
|
163 |
lines=1
|
164 |
)
|
165 |
-
|
166 |
-
#
|
167 |
models_list = [
|
168 |
"meta-llama/Llama-3.3-70B-Instruct",
|
169 |
-
"
|
170 |
-
"
|
171 |
-
"
|
172 |
"tiiuae/falcon-7b-instruct",
|
173 |
-
"
|
|
|
|
|
|
|
174 |
]
|
175 |
-
|
176 |
-
|
177 |
-
# This won't directly override the "Custom Model" field, but you can copy it from here
|
178 |
-
featured_model = gr.Radio(
|
179 |
label="Select a model below",
|
180 |
choices=models_list,
|
181 |
value="meta-llama/Llama-3.3-70B-Instruct",
|
182 |
interactive=True
|
183 |
)
|
184 |
|
185 |
-
#
|
186 |
def filter_models(search_term):
|
187 |
-
# Filter the list by checking if the search term is in each model name
|
188 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
189 |
return gr.update(choices=filtered)
|
190 |
|
191 |
-
#
|
192 |
-
|
|
|
|
|
|
|
|
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
if __name__ == "__main__":
|
196 |
print("Launching the demo application.")
|
|
|
34 |
- top_p: top-p (nucleus) sampling
|
35 |
- frequency_penalty: penalize repeated tokens in the output
|
36 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
37 |
+
- custom_model: the final model name in use, which may be set by selecting from the Featured Models radio or by typing a custom model
|
38 |
"""
|
39 |
|
40 |
print(f"Received message: {message}")
|
|
|
42 |
print(f"System message: {system_message}")
|
43 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
44 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
45 |
+
print(f"Selected model (custom_model): {custom_model}")
|
46 |
|
47 |
# Convert seed to None if -1 (meaning random)
|
48 |
if seed == -1:
|
|
|
65 |
# Append the latest user message
|
66 |
messages.append({"role": "user", "content": message})
|
67 |
|
68 |
+
# If user provided a model, use that; otherwise, fall back to a default
|
69 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
70 |
print(f"Model selected for inference: {model_to_use}")
|
71 |
|
|
|
75 |
|
76 |
# Make the streaming request to the HF Inference API via openai-like client
|
77 |
for message_chunk in client.chat.completions.create(
|
78 |
+
model=model_to_use, # Use either the user-provided or default model
|
79 |
max_tokens=max_tokens,
|
80 |
stream=True, # Stream the response
|
81 |
temperature=temperature,
|
|
|
93 |
|
94 |
print("Completed response generation.")
|
95 |
|
96 |
+
# -------------------------
|
97 |
+
# GRADIO UI CONFIGURATION
|
98 |
+
# -------------------------
|
99 |
+
|
100 |
# Create a Chatbot component with a specified height
|
101 |
chatbot = gr.Chatbot(height=600)
|
102 |
print("Chatbot interface created.")
|
103 |
|
104 |
+
# We'll create text boxes & sliders for system prompt, tokens, etc.
|
105 |
+
system_message_box = gr.Textbox(value="", label="System message")
|
106 |
+
|
107 |
+
max_tokens_slider = gr.Slider(
|
108 |
+
minimum=1,
|
109 |
+
maximum=4096,
|
110 |
+
value=512,
|
111 |
+
step=1,
|
112 |
+
label="Max new tokens"
|
113 |
+
)
|
114 |
+
temperature_slider = gr.Slider(
|
115 |
+
minimum=0.1,
|
116 |
+
maximum=4.0,
|
117 |
+
value=0.7,
|
118 |
+
step=0.1,
|
119 |
+
label="Temperature"
|
120 |
+
)
|
121 |
+
top_p_slider = gr.Slider(
|
122 |
+
minimum=0.1,
|
123 |
+
maximum=1.0,
|
124 |
+
value=0.95,
|
125 |
+
step=0.05,
|
126 |
+
label="Top-P"
|
127 |
+
)
|
128 |
+
frequency_penalty_slider = gr.Slider(
|
129 |
+
minimum=-2.0,
|
130 |
+
maximum=2.0,
|
131 |
+
value=0.0,
|
132 |
+
step=0.1,
|
133 |
+
label="Frequency Penalty"
|
134 |
+
)
|
135 |
+
seed_slider = gr.Slider(
|
136 |
+
minimum=-1,
|
137 |
+
maximum=65535,
|
138 |
+
value=-1,
|
139 |
+
step=1,
|
140 |
+
label="Seed (-1 for random)"
|
141 |
+
)
|
142 |
+
|
143 |
+
# The custom_model_box is what the respond function sees as "custom_model"
|
144 |
+
custom_model_box = gr.Textbox(
|
145 |
+
value="",
|
146 |
+
label="Custom Model",
|
147 |
+
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model."
|
148 |
+
)
|
149 |
+
|
150 |
+
# Define a function that, when a user selects a model from the radio, populates `custom_model_box`
|
151 |
+
def set_custom_model_from_radio(selected):
|
152 |
+
"""
|
153 |
+
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
|
154 |
+
We will update the Custom Model text box with that selection automatically.
|
155 |
+
"""
|
156 |
+
return selected
|
157 |
+
|
158 |
+
# The main ChatInterface object
|
159 |
demo = gr.ChatInterface(
|
160 |
fn=respond,
|
161 |
+
# For ChatInterface, we can pass additional inputs in order to feed them into the "respond" function
|
162 |
additional_inputs=[
|
163 |
+
system_message_box,
|
164 |
+
max_tokens_slider,
|
165 |
+
temperature_slider,
|
166 |
+
top_p_slider,
|
167 |
+
frequency_penalty_slider,
|
168 |
+
seed_slider,
|
169 |
+
custom_model_box
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
],
|
171 |
fill_height=True,
|
172 |
chatbot=chatbot,
|
173 |
theme="Nymbo/Nymbo_Theme",
|
174 |
)
|
|
|
175 |
|
176 |
+
# -----------
|
177 |
+
# ADDING THE "FEATURED MODELS" ACCORDION
|
178 |
+
# -----------
|
|
|
179 |
with demo:
|
180 |
with gr.Accordion("Featured Models", open=False):
|
181 |
+
model_search_box = gr.Textbox(
|
|
|
182 |
label="Filter Models",
|
183 |
placeholder="Search for a featured model...",
|
184 |
lines=1
|
185 |
)
|
186 |
+
|
187 |
+
# Sample list of popular text models
|
188 |
models_list = [
|
189 |
"meta-llama/Llama-3.3-70B-Instruct",
|
190 |
+
"bigscience/bloomz-7b1",
|
191 |
+
"OpenAssistant/oasst-sft-1-pythia-12b",
|
192 |
+
"OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
|
193 |
"tiiuae/falcon-7b-instruct",
|
194 |
+
"OpenAI/gpt-3.5-turbo",
|
195 |
+
"OpenAI/gpt-4-32k",
|
196 |
+
"meta-llama/Llama-2-13B-chat-hf",
|
197 |
+
"meta-llama/Llama-2-70B-chat-hf",
|
198 |
]
|
199 |
+
|
200 |
+
featured_model_radio = gr.Radio(
|
|
|
|
|
201 |
label="Select a model below",
|
202 |
choices=models_list,
|
203 |
value="meta-llama/Llama-3.3-70B-Instruct",
|
204 |
interactive=True
|
205 |
)
|
206 |
|
207 |
+
# Filter function for the radio
|
208 |
def filter_models(search_term):
|
|
|
209 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
210 |
return gr.update(choices=filtered)
|
211 |
|
212 |
+
# Whenever we type in the search box, update the radio with the filtered list
|
213 |
+
model_search_box.change(
|
214 |
+
fn=filter_models,
|
215 |
+
inputs=model_search_box,
|
216 |
+
outputs=featured_model_radio
|
217 |
+
)
|
218 |
|
219 |
+
# Whenever we select a featured model, populate the 'Custom Model' textbox
|
220 |
+
featured_model_radio.change(
|
221 |
+
fn=set_custom_model_from_radio,
|
222 |
+
inputs=featured_model_radio,
|
223 |
+
outputs=custom_model_box
|
224 |
+
)
|
225 |
+
|
226 |
+
print("Gradio interface initialized.")
|
227 |
|
228 |
if __name__ == "__main__":
|
229 |
print("Launching the demo application.")
|