Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -34,7 +34,7 @@ def respond(
|
|
| 34 |
- top_p: top-p (nucleus) sampling
|
| 35 |
- frequency_penalty: penalize repeated tokens in the output
|
| 36 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
| 37 |
-
- custom_model: the
|
| 38 |
"""
|
| 39 |
|
| 40 |
print(f"Received message: {message}")
|
|
@@ -42,7 +42,7 @@ def respond(
|
|
| 42 |
print(f"System message: {system_message}")
|
| 43 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
| 44 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
| 45 |
-
print(f"
|
| 46 |
|
| 47 |
# Convert seed to None if -1 (meaning random)
|
| 48 |
if seed == -1:
|
|
@@ -65,7 +65,7 @@ def respond(
|
|
| 65 |
# Append the latest user message
|
| 66 |
messages.append({"role": "user", "content": message})
|
| 67 |
|
| 68 |
-
#
|
| 69 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
| 70 |
print(f"Model selected for inference: {model_to_use}")
|
| 71 |
|
|
@@ -75,7 +75,7 @@ def respond(
|
|
| 75 |
|
| 76 |
# Make the streaming request to the HF Inference API via openai-like client
|
| 77 |
for message_chunk in client.chat.completions.create(
|
| 78 |
-
model=model_to_use, # Use either the user-provided
|
| 79 |
max_tokens=max_tokens,
|
| 80 |
stream=True, # Stream the response
|
| 81 |
temperature=temperature,
|
|
@@ -93,104 +93,137 @@ def respond(
|
|
| 93 |
|
| 94 |
print("Completed response generation.")
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
# Create a Chatbot component with a specified height
|
| 97 |
chatbot = gr.Chatbot(height=600)
|
| 98 |
print("Chatbot interface created.")
|
| 99 |
|
| 100 |
-
#
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
demo = gr.ChatInterface(
|
| 103 |
fn=respond,
|
|
|
|
| 104 |
additional_inputs=[
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
),
|
| 113 |
-
gr.Slider(
|
| 114 |
-
minimum=0.1,
|
| 115 |
-
maximum=4.0,
|
| 116 |
-
value=0.7,
|
| 117 |
-
step=0.1,
|
| 118 |
-
label="Temperature"
|
| 119 |
-
),
|
| 120 |
-
gr.Slider(
|
| 121 |
-
minimum=0.1,
|
| 122 |
-
maximum=1.0,
|
| 123 |
-
value=0.95,
|
| 124 |
-
step=0.05,
|
| 125 |
-
label="Top-P"
|
| 126 |
-
),
|
| 127 |
-
gr.Slider(
|
| 128 |
-
minimum=-2.0,
|
| 129 |
-
maximum=2.0,
|
| 130 |
-
value=0.0,
|
| 131 |
-
step=0.1,
|
| 132 |
-
label="Frequency Penalty"
|
| 133 |
-
),
|
| 134 |
-
gr.Slider(
|
| 135 |
-
minimum=-1,
|
| 136 |
-
maximum=65535,
|
| 137 |
-
value=-1,
|
| 138 |
-
step=1,
|
| 139 |
-
label="Seed (-1 for random)"
|
| 140 |
-
),
|
| 141 |
-
gr.Textbox(
|
| 142 |
-
value="",
|
| 143 |
-
label="Custom Model",
|
| 144 |
-
info="(Optional) Provide a custom Hugging Face model path. This will override the default model if not empty."
|
| 145 |
-
),
|
| 146 |
],
|
| 147 |
fill_height=True,
|
| 148 |
chatbot=chatbot,
|
| 149 |
theme="Nymbo/Nymbo_Theme",
|
| 150 |
)
|
| 151 |
-
print("Gradio interface initialized.")
|
| 152 |
|
| 153 |
-
#
|
| 154 |
-
#
|
| 155 |
-
#
|
| 156 |
-
# --------------------------------------------------------
|
| 157 |
with demo:
|
| 158 |
with gr.Accordion("Featured Models", open=False):
|
| 159 |
-
|
| 160 |
-
model_search = gr.Textbox(
|
| 161 |
label="Filter Models",
|
| 162 |
placeholder="Search for a featured model...",
|
| 163 |
lines=1
|
| 164 |
)
|
| 165 |
-
|
| 166 |
-
#
|
| 167 |
models_list = [
|
| 168 |
"meta-llama/Llama-3.3-70B-Instruct",
|
| 169 |
-
"
|
| 170 |
-
"
|
| 171 |
-
"
|
| 172 |
"tiiuae/falcon-7b-instruct",
|
| 173 |
-
"
|
|
|
|
|
|
|
|
|
|
| 174 |
]
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
# This won't directly override the "Custom Model" field, but you can copy it from here
|
| 178 |
-
featured_model = gr.Radio(
|
| 179 |
label="Select a model below",
|
| 180 |
choices=models_list,
|
| 181 |
value="meta-llama/Llama-3.3-70B-Instruct",
|
| 182 |
interactive=True
|
| 183 |
)
|
| 184 |
|
| 185 |
-
#
|
| 186 |
def filter_models(search_term):
|
| 187 |
-
# Filter the list by checking if the search term is in each model name
|
| 188 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
| 189 |
return gr.update(choices=filtered)
|
| 190 |
|
| 191 |
-
#
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
if __name__ == "__main__":
|
| 196 |
print("Launching the demo application.")
|
|
|
|
| 34 |
- top_p: top-p (nucleus) sampling
|
| 35 |
- frequency_penalty: penalize repeated tokens in the output
|
| 36 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
| 37 |
+
- custom_model: the final model name in use, which may be set by selecting from the Featured Models radio or by typing a custom model
|
| 38 |
"""
|
| 39 |
|
| 40 |
print(f"Received message: {message}")
|
|
|
|
| 42 |
print(f"System message: {system_message}")
|
| 43 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
| 44 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
| 45 |
+
print(f"Selected model (custom_model): {custom_model}")
|
| 46 |
|
| 47 |
# Convert seed to None if -1 (meaning random)
|
| 48 |
if seed == -1:
|
|
|
|
| 65 |
# Append the latest user message
|
| 66 |
messages.append({"role": "user", "content": message})
|
| 67 |
|
| 68 |
+
# If user provided a model, use that; otherwise, fall back to a default
|
| 69 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
|
| 70 |
print(f"Model selected for inference: {model_to_use}")
|
| 71 |
|
|
|
|
| 75 |
|
| 76 |
# Make the streaming request to the HF Inference API via openai-like client
|
| 77 |
for message_chunk in client.chat.completions.create(
|
| 78 |
+
model=model_to_use, # Use either the user-provided or default model
|
| 79 |
max_tokens=max_tokens,
|
| 80 |
stream=True, # Stream the response
|
| 81 |
temperature=temperature,
|
|
|
|
| 93 |
|
| 94 |
print("Completed response generation.")
|
| 95 |
|
| 96 |
+
# -------------------------
|
| 97 |
+
# GRADIO UI CONFIGURATION
|
| 98 |
+
# -------------------------
|
| 99 |
+
|
| 100 |
# Create a Chatbot component with a specified height
|
| 101 |
chatbot = gr.Chatbot(height=600)
|
| 102 |
print("Chatbot interface created.")
|
| 103 |
|
| 104 |
+
# We'll create text boxes & sliders for system prompt, tokens, etc.
|
| 105 |
+
system_message_box = gr.Textbox(value="", label="System message")
|
| 106 |
+
|
| 107 |
+
max_tokens_slider = gr.Slider(
|
| 108 |
+
minimum=1,
|
| 109 |
+
maximum=4096,
|
| 110 |
+
value=512,
|
| 111 |
+
step=1,
|
| 112 |
+
label="Max new tokens"
|
| 113 |
+
)
|
| 114 |
+
temperature_slider = gr.Slider(
|
| 115 |
+
minimum=0.1,
|
| 116 |
+
maximum=4.0,
|
| 117 |
+
value=0.7,
|
| 118 |
+
step=0.1,
|
| 119 |
+
label="Temperature"
|
| 120 |
+
)
|
| 121 |
+
top_p_slider = gr.Slider(
|
| 122 |
+
minimum=0.1,
|
| 123 |
+
maximum=1.0,
|
| 124 |
+
value=0.95,
|
| 125 |
+
step=0.05,
|
| 126 |
+
label="Top-P"
|
| 127 |
+
)
|
| 128 |
+
frequency_penalty_slider = gr.Slider(
|
| 129 |
+
minimum=-2.0,
|
| 130 |
+
maximum=2.0,
|
| 131 |
+
value=0.0,
|
| 132 |
+
step=0.1,
|
| 133 |
+
label="Frequency Penalty"
|
| 134 |
+
)
|
| 135 |
+
seed_slider = gr.Slider(
|
| 136 |
+
minimum=-1,
|
| 137 |
+
maximum=65535,
|
| 138 |
+
value=-1,
|
| 139 |
+
step=1,
|
| 140 |
+
label="Seed (-1 for random)"
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
# The custom_model_box is what the respond function sees as "custom_model"
|
| 144 |
+
custom_model_box = gr.Textbox(
|
| 145 |
+
value="",
|
| 146 |
+
label="Custom Model",
|
| 147 |
+
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model."
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# Define a function that, when a user selects a model from the radio, populates `custom_model_box`
|
| 151 |
+
def set_custom_model_from_radio(selected):
|
| 152 |
+
"""
|
| 153 |
+
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
|
| 154 |
+
We will update the Custom Model text box with that selection automatically.
|
| 155 |
+
"""
|
| 156 |
+
return selected
|
| 157 |
+
|
| 158 |
+
# The main ChatInterface object
|
| 159 |
demo = gr.ChatInterface(
|
| 160 |
fn=respond,
|
| 161 |
+
# For ChatInterface, we can pass additional inputs in order to feed them into the "respond" function
|
| 162 |
additional_inputs=[
|
| 163 |
+
system_message_box,
|
| 164 |
+
max_tokens_slider,
|
| 165 |
+
temperature_slider,
|
| 166 |
+
top_p_slider,
|
| 167 |
+
frequency_penalty_slider,
|
| 168 |
+
seed_slider,
|
| 169 |
+
custom_model_box
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
],
|
| 171 |
fill_height=True,
|
| 172 |
chatbot=chatbot,
|
| 173 |
theme="Nymbo/Nymbo_Theme",
|
| 174 |
)
|
|
|
|
| 175 |
|
| 176 |
+
# -----------
|
| 177 |
+
# ADDING THE "FEATURED MODELS" ACCORDION
|
| 178 |
+
# -----------
|
|
|
|
| 179 |
with demo:
|
| 180 |
with gr.Accordion("Featured Models", open=False):
|
| 181 |
+
model_search_box = gr.Textbox(
|
|
|
|
| 182 |
label="Filter Models",
|
| 183 |
placeholder="Search for a featured model...",
|
| 184 |
lines=1
|
| 185 |
)
|
| 186 |
+
|
| 187 |
+
# Sample list of popular text models
|
| 188 |
models_list = [
|
| 189 |
"meta-llama/Llama-3.3-70B-Instruct",
|
| 190 |
+
"bigscience/bloomz-7b1",
|
| 191 |
+
"OpenAssistant/oasst-sft-1-pythia-12b",
|
| 192 |
+
"OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
|
| 193 |
"tiiuae/falcon-7b-instruct",
|
| 194 |
+
"OpenAI/gpt-3.5-turbo",
|
| 195 |
+
"OpenAI/gpt-4-32k",
|
| 196 |
+
"meta-llama/Llama-2-13B-chat-hf",
|
| 197 |
+
"meta-llama/Llama-2-70B-chat-hf",
|
| 198 |
]
|
| 199 |
+
|
| 200 |
+
featured_model_radio = gr.Radio(
|
|
|
|
|
|
|
| 201 |
label="Select a model below",
|
| 202 |
choices=models_list,
|
| 203 |
value="meta-llama/Llama-3.3-70B-Instruct",
|
| 204 |
interactive=True
|
| 205 |
)
|
| 206 |
|
| 207 |
+
# Filter function for the radio
|
| 208 |
def filter_models(search_term):
|
|
|
|
| 209 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
| 210 |
return gr.update(choices=filtered)
|
| 211 |
|
| 212 |
+
# Whenever we type in the search box, update the radio with the filtered list
|
| 213 |
+
model_search_box.change(
|
| 214 |
+
fn=filter_models,
|
| 215 |
+
inputs=model_search_box,
|
| 216 |
+
outputs=featured_model_radio
|
| 217 |
+
)
|
| 218 |
|
| 219 |
+
# Whenever we select a featured model, populate the 'Custom Model' textbox
|
| 220 |
+
featured_model_radio.change(
|
| 221 |
+
fn=set_custom_model_from_radio,
|
| 222 |
+
inputs=featured_model_radio,
|
| 223 |
+
outputs=custom_model_box
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
print("Gradio interface initialized.")
|
| 227 |
|
| 228 |
if __name__ == "__main__":
|
| 229 |
print("Launching the demo application.")
|