File size: 25,763 Bytes
a35b524 c7e2afa 4390bf0 197d1b2 a35b524 46a28f1 5dc36a5 46a28f1 5dc36a5 46a28f1 5dc36a5 46a28f1 5dc36a5 46a28f1 f978f29 46a28f1 5dc36a5 46a28f1 5dc36a5 46a28f1 5dc36a5 46a28f1 5dc36a5 46a28f1 5dc36a5 46a28f1 606905f 5dc36a5 197d1b2 46a28f1 dd908a8 46a28f1 dd908a8 46a28f1 dd908a8 46a28f1 ebc0082 dd908a8 ebc0082 46a28f1 ebc0082 46a28f1 dd908a8 1fe4ec0 46a28f1 1fe4ec0 039bb05 46a28f1 039bb05 ebc0082 039bb05 ebc0082 46a28f1 dd908a8 46a28f1 42c2829 a35b524 f8c0a84 a35b524 2d5437b 5481883 197d1b2 5481883 197d1b2 2d5437b 5481883 197d1b2 a35b524 5481883 197d1b2 5481883 84507a0 8714492 f8c0a84 75b26b6 feb995d 5481883 197d1b2 5481883 a35b524 197d1b2 a35b524 46a28f1 b8a4bc2 5481883 42c2829 a35b524 5481883 42c2829 5481883 197d1b2 a35b524 5481883 197d1b2 5481883 a35b524 42c2829 a35b524 42c2829 a35b524 5481883 a35b524 5481883 c283108 dd908a8 c283108 a35b524 46a28f1 a35b524 42c2829 a35b524 42c2829 a35b524 42c2829 a35b524 42c2829 a35b524 5481883 42c2829 5481883 2d5437b b40a05d a35b524 42c2829 5481883 a35b524 42c2829 a35b524 42c2829 a35b524 42c2829 a35b524 db75431 a35b524 a92df2e 58073a4 a92df2e 58073a4 a35b524 4d63f87 7905ae8 a35b524 1046e61 a35b524 6c56d9c a35b524 635a3c6 6fc172b 7928ec7 46a28f1 50fa4f0 c283108 86bfc9c b4a377f 24bf5c9 b82741e 46a28f1 64064b9 46a28f1 64064b9 37de66c 24bf5c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
import streamlit as st
import numpy as np
import pandas as pd
import time
import math
from difflib import SequenceMatcher
import scipy.stats
def calculate_weighted_ownership_vectorized(ownership_array):
"""
Vectorized version of calculate_weighted_ownership using NumPy operations.
Args:
ownership_array: 2D array of ownership values (rows x players)
Returns:
array: Calculated weighted ownership values for each row
"""
# Convert percentages to decimals and handle NaN values
ownership_array = np.where(np.isnan(ownership_array), 0, ownership_array) / 100
# Calculate row means
row_means = np.mean(ownership_array, axis=1, keepdims=True)
# Calculate average of each value with the overall mean
value_means = (ownership_array + row_means) / 2
# Take average of all those means
avg_of_means = np.mean(value_means, axis=1)
# Multiply by count of values
weighted = avg_of_means * ownership_array.shape[1]
# Subtract (max - min) for each row
row_max = np.max(ownership_array, axis=1)
row_min = np.min(ownership_array, axis=1)
weighted = weighted - (row_max - row_min)
# Convert back to percentage form
return weighted * 10000
def calculate_flex_ranks_efficient(portfolio, start_col, end_col, maps_dict, map_key='own_map'):
"""Memory-efficient replacement for pd.concat + rank operations"""
n_rows = len(portfolio)
n_cols = end_col - start_col
# Pre-allocate result arrays
all_values = np.zeros(n_rows * n_cols, dtype=np.float32)
# Fill values column by column
for i, col_idx in enumerate(range(start_col, end_col)):
start_idx = i * n_rows
end_idx = (i + 1) * n_rows
all_values[start_idx:end_idx] = portfolio.iloc[:, col_idx].map(maps_dict[map_key]).values
# Calculate percentile ranks efficiently
ranks = scipy.stats.rankdata(all_values, method='average') / len(all_values)
# Reshape back to individual column ranks
result_ranks = {}
for i in range(n_cols):
start_idx = i * n_rows
end_idx = (i + 1) * n_rows
result_ranks[i] = ranks[start_idx:end_idx]
return result_ranks
def calculate_weighted_ownership_wrapper(row_ownerships):
"""
Wrapper function for the original calculate_weighted_ownership to work with Pandas .apply()
Args:
row_ownerships: Series containing ownership values in percentage form
Returns:
float: Calculated weighted ownership value
"""
# Convert Series to 2D array for vectorized function
ownership_array = row_ownerships.values.reshape(1, -1)
return calculate_weighted_ownership_vectorized(ownership_array)[0]
def calculate_player_similarity_score_chunked(portfolio, player_columns, chunk_size=1000):
"""
Memory-efficient version that processes similarities in chunks
"""
# Same setup as before
player_data = portfolio[player_columns].astype(str).fillna('').values
all_players = set()
for row in player_data:
for val in row:
if isinstance(val, str) and val.strip() != '':
all_players.add(val)
player_to_id = {player: idx for idx, player in enumerate(sorted(all_players))}
n_players = len(all_players)
n_rows = len(portfolio)
binary_matrix = np.zeros((n_rows, n_players), dtype=np.int8)
for i, row in enumerate(player_data):
for val in row:
if isinstance(val, str) and str(val).strip() != '' and str(val) in player_to_id:
binary_matrix[i, player_to_id[str(val)]] = 1
# Process similarities in chunks to avoid massive matrices
similarity_scores = np.zeros(n_rows)
for i in range(0, n_rows, chunk_size):
end_i = min(i + chunk_size, n_rows)
chunk_binary = binary_matrix[i:end_i]
# Calculate similarities for this chunk only
intersection = np.dot(chunk_binary, binary_matrix.T)
chunk_row_sums = np.sum(chunk_binary, axis=1)
all_row_sums = np.sum(binary_matrix, axis=1)
union = chunk_row_sums[:, np.newaxis] + all_row_sums - intersection
with np.errstate(divide='ignore', invalid='ignore'):
jaccard_sim = np.divide(intersection, union,
out=np.zeros_like(intersection, dtype=float),
where=union != 0)
jaccard_dist = 1 - jaccard_sim
# Exclude self-comparison and calculate average
for j in range(len(jaccard_dist)):
actual_idx = i + j
jaccard_dist[j, actual_idx] = 0 # Exclude self
similarity_scores[i:end_i] = np.sum(jaccard_dist, axis=1) / (n_rows - 1)
# Normalize
score_range = similarity_scores.max() - similarity_scores.min()
if score_range > 0:
similarity_scores = (similarity_scores - similarity_scores.min()) / score_range
return similarity_scores
# Keep the original function for backward compatibility
def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, strength_var, sport_var, max_salary):
if strength_var == 'Weak':
dupes_multiplier = .75
percentile_multiplier = .90
elif strength_var == 'Average':
dupes_multiplier = 1.00
percentile_multiplier = 1.00
elif strength_var == 'Sharp':
dupes_multiplier = 1.25
percentile_multiplier = 1.10
if sport_var == 'NFL':
own_baseline = 180
else:
own_baseline = 120
max_ownership = max(maps_dict['own_map'].values()) / 100
average_ownership = np.mean(list(maps_dict['own_map'].values())) / 100
if type_var == 'Showdown':
if sport_var == 'GOLF':
dup_count_columns = ['FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank', 'FLEX6_Own_percent_rank']
own_columns = ['FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own', 'FLEX6_Own']
else:
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
# Get the original player columns (first 6 columns excluding salary, median, Own)
player_columns = [col for col in portfolio.columns[:6] if col not in ['salary', 'median', 'Own']]
n_rows = len(portfolio)
# Assign ranks back to individual columns using the same rank scale
if sport_var == 'GOLF':
flex_ranks = calculate_flex_ranks_efficient(portfolio, 1, 7, maps_dict)
portfolio['FLEX1_Own_percent_rank'] = flex_ranks[0]
portfolio['FLEX2_Own_percent_rank'] = flex_ranks[1]
portfolio['FLEX3_Own_percent_rank'] = flex_ranks[2]
portfolio['FLEX4_Own_percent_rank'] = flex_ranks[3]
portfolio['FLEX5_Own_percent_rank'] = flex_ranks[4]
portfolio['FLEX6_Own_percent_rank'] = flex_ranks[5]
portfolio['FLEX1_Own'] = portfolio.iloc[:,0].map(maps_dict['own_map']).astype('float32') / 100
portfolio['FLEX2_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100
portfolio['FLEX3_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100
portfolio['FLEX4_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100
portfolio['FLEX5_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100
portfolio['FLEX6_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100
else:
flex_ranks = calculate_flex_ranks_efficient(portfolio, 1, 6, maps_dict)
portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
portfolio['FLEX1_Own_percent_rank'] = flex_ranks[0]
portfolio['FLEX2_Own_percent_rank'] = flex_ranks[1]
portfolio['FLEX3_Own_percent_rank'] = flex_ranks[2]
portfolio['FLEX4_Own_percent_rank'] = flex_ranks[3]
portfolio['FLEX5_Own_percent_rank'] = flex_ranks[4]
portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100
portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100
portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100
portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100
portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100
portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
# Calculate dupes formula (in progress still)
portfolio['dupes_calc'] = ((portfolio['own_product'] + ((portfolio['CPT_Own_percent_rank'] - .50) / 1000) + ((portfolio['Own'] / 6) / (max_salary / 2))) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (max_salary - portfolio['Own'])) / 100) - ((max_salary - portfolio['salary']) / 100)
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (own_baseline + (Contest_Size / 1000)))
portfolio['dupes_calc'] = ((((portfolio['salary'] / (max_salary * 0.98)) - 1)*(max_salary / 10000)) + 1) * portfolio['dupes_calc']
portfolio['dupes_calc'] = portfolio['dupes_calc'] * ((portfolio['CPT_Own_percent_rank'] + .50) / (portfolio['Own'] / 110))
# Round and handle negative values
portfolio['Dupes'] = np.where(
portfolio['salary'] == max_salary,
portfolio['dupes_calc'] + (portfolio['dupes_calc'] * .10),
portfolio['dupes_calc']
)
portfolio['Dupes'] = np.where(
np.round(portfolio['Dupes'], 0) <= 0,
0,
np.round(portfolio['Dupes'], 0) - 1
)
elif type_var == 'Classic':
if sport_var == 'CS2':
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
# Get the original player columns (first 6 columns excluding salary, median, Own)
player_columns = [col for col in portfolio.columns[:6] if col not in ['salary', 'median', 'Own']]
n_rows = len(portfolio)
flex_ranks = calculate_flex_ranks_efficient(portfolio, 1, 6, maps_dict)
# Assign ranks back to individual columns using the same rank scale
portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
portfolio['FLEX1_Own_percent_rank'] = flex_ranks[0]
portfolio['FLEX2_Own_percent_rank'] = flex_ranks[1]
portfolio['FLEX3_Own_percent_rank'] = flex_ranks[2]
portfolio['FLEX4_Own_percent_rank'] = flex_ranks[3]
portfolio['FLEX5_Own_percent_rank'] = flex_ranks[4]
portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100
portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100
portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100
portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100
portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100
portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100
portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) * max(Contest_Size / 10000, 1)
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
# Calculate dupes formula
portfolio['dupes_calc'] = ((portfolio['own_product'] * 10) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (max_salary - portfolio['Own'])) / 50) - ((max_salary - portfolio['salary']) / 50)
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (90 + (Contest_Size / 1000)))
# Round and handle negative values
portfolio['Dupes'] = np.where(
portfolio['salary'] == max_salary,
portfolio['dupes_calc'] + (portfolio['dupes_calc'] * .10),
portfolio['dupes_calc']
)
portfolio['Dupes'] = np.where(
np.round(portfolio['Dupes'], 0) <= 0,
0,
np.round(portfolio['Dupes'], 0) - 1
)
if sport_var == 'LOL':
dup_count_columns = ['CPT_Own_percent_rank', 'TOP_Own_percent_rank', 'JNG_Own_percent_rank', 'MID_Own_percent_rank', 'ADC_Own_percent_rank', 'SUP_Own_percent_rank', 'Team_Own_percent_rank']
own_columns = ['CPT_Own', 'TOP_Own', 'JNG_Own', 'MID_Own', 'ADC_Own', 'SUP_Own', 'Team_Own']
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
# Get the original player columns (first 6 columns excluding salary, median, Own)
player_columns = [col for col in portfolio.columns[:7] if col not in ['salary', 'median', 'Own']]
n_rows = len(portfolio)
flex_ranks = calculate_flex_ranks_efficient(portfolio, 1, 7, maps_dict)
# Assign ranks back to individual columns using the same rank scale
portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
portfolio['TOP_Own_percent_rank'] = flex_ranks[0]
portfolio['JNG_Own_percent_rank'] = flex_ranks[1]
portfolio['MID_Own_percent_rank'] = flex_ranks[2]
portfolio['ADC_Own_percent_rank'] = flex_ranks[3]
portfolio['SUP_Own_percent_rank'] = flex_ranks[4]
portfolio['Team_Own_percent_rank'] = flex_ranks[5]
portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100
portfolio['TOP_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100
portfolio['JNG_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100
portfolio['MID_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100
portfolio['ADC_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100
portfolio['SUP_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100
portfolio['Team_Own'] = portfolio.iloc[:,6].map(maps_dict['own_map']).astype('float32') / 100
portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) * max(Contest_Size / 10000, 1)
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
# Calculate dupes formula
portfolio['dupes_calc'] = ((portfolio['own_product'] * 10) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (max_salary - portfolio['Own'])) / 50) - ((max_salary - portfolio['salary']) / 50)
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (90 + (Contest_Size / 1000)))
# Round and handle negative values
portfolio['Dupes'] = np.where(
portfolio['salary'] == max_salary,
portfolio['dupes_calc'] + (portfolio['dupes_calc'] * .10),
portfolio['dupes_calc']
)
portfolio['Dupes'] = np.where(
np.round(portfolio['Dupes'], 0) <= 0,
0,
np.round(portfolio['Dupes'], 0) - 1
)
elif sport_var == 'GOLF':
num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
# Get the original player columns (first num_players columns excluding salary, median, Own)
player_columns = [col for col in portfolio.columns[:num_players] if col not in ['salary', 'median', 'Own']]
for i in range(1, num_players + 1):
portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank'])
portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']).astype('float32') / 100
portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) * max(Contest_Size / 10000, 1)
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (max_salary - portfolio['Own'])) / 100) - ((max_salary - portfolio['salary']) / 100)
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (90 + (Contest_Size / 1000)))
# Round and handle negative values
portfolio['Dupes'] = np.where(
portfolio['salary'] == max_salary,
portfolio['dupes_calc'] + (portfolio['dupes_calc'] * .10),
portfolio['dupes_calc']
)
portfolio['Dupes'] = np.where(
np.round(portfolio['Dupes'], 0) <= 0,
0,
np.round(portfolio['Dupes'], 0) - 1
)
else:
num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
# Get the original player columns (first num_players columns excluding salary, median, Own)
player_columns = [col for col in portfolio.columns[:num_players] if col not in ['salary', 'median', 'Own']]
for i in range(1, num_players + 1):
portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank'])
portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']).astype('float32') / 100
portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (max_salary - portfolio['Own'])) / 100) - ((max_salary - portfolio['salary']) / 100)
portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (90 + (Contest_Size / 1000)))
# Round and handle negative values
portfolio['Dupes'] = np.where(
portfolio['salary'] == max_salary,
portfolio['dupes_calc'] + (portfolio['dupes_calc'] * .10),
portfolio['dupes_calc']
)
portfolio['Dupes'] = np.where(
np.round(portfolio['Dupes'], 0) <= 0,
0,
np.round(portfolio['Dupes'], 0) - 1
)
portfolio['Dupes'] = np.round(portfolio['Dupes'], 0)
portfolio['own_ratio'] = np.where(
portfolio[own_columns].isin([max_ownership]).any(axis=1),
portfolio['own_sum'] / portfolio['own_average'],
(portfolio['own_sum'] - max_ownership) / portfolio['own_average']
)
percentile_cut_scalar = portfolio['median'].max()
if type_var == 'Classic':
if sport_var == 'CS2':
own_ratio_nerf = 2
elif sport_var == 'LOL':
own_ratio_nerf = 2
else:
own_ratio_nerf = 1.5
elif type_var == 'Showdown':
own_ratio_nerf = 1.5
portfolio['Finish_percentile'] = portfolio.apply(
lambda row: .0005 if (row['own_ratio'] - own_ratio_nerf) / ((5 * (row['median'] / percentile_cut_scalar)) / 3) < .0005
else ((row['own_ratio'] - own_ratio_nerf) / ((5 * (row['median'] / percentile_cut_scalar)) / 3)) / 2,
axis=1
)
portfolio['Ref_Proj'] = portfolio['median'].max()
portfolio['Max_Proj'] = portfolio['Ref_Proj'] + 10
portfolio['Min_Proj'] = portfolio['Ref_Proj'] - 10
portfolio['Avg_Ref'] = (portfolio['Max_Proj'] + portfolio['Min_Proj']) / 2
portfolio['Win%'] = (((portfolio['median'] / portfolio['Avg_Ref']) - (0.1 + ((portfolio['Ref_Proj'] - portfolio['median'])/100))) / (Contest_Size / 1000)) / 10
max_allowed_win = (1 / Contest_Size) * 5
portfolio['Win%'] = portfolio['Win%'] / portfolio['Win%'].max() * max_allowed_win
portfolio['Finish_percentile'] = portfolio['Finish_percentile'] + .005 + (.005 * (Contest_Size / 10000))
portfolio['Finish_percentile'] = portfolio['Finish_percentile'] * percentile_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000)))
portfolio['Win%'] = portfolio['Win%'] * (1 - portfolio['Finish_percentile'])
portfolio['Win%'] = portfolio['Win%'].clip(lower=0, upper=max_allowed_win)
portfolio['low_own_count'] = portfolio[own_columns].apply(lambda row: (row < 0.10).sum(), axis=1)
portfolio['Finish_percentile'] = portfolio.apply(lambda row: row['Finish_percentile'] if row['low_own_count'] <= 0 else row['Finish_percentile'] / row['low_own_count'], axis=1)
portfolio['Lineup Edge'] = (portfolio['Win%'] * ((.5 - portfolio['Finish_percentile']) * (Contest_Size / 2.5)))
# portfolio['Lineup Edge'] = portfolio.apply(lambda row: row['Lineup Edge'] / (row['Dupes'] + 1) if row['Dupes'] > 0 else row['Lineup Edge'], axis=1)
portfolio['Lineup Edge'] = ((portfolio['Lineup Edge'] - portfolio['Lineup Edge'].mean())) - ((portfolio['Dupes'] - portfolio['Dupes'].mean()) / 50)
max_edge = portfolio['Lineup Edge'].max()
portfolio['Lineup Edge'] = 2 * max_edge * (portfolio['Lineup Edge'] - portfolio['Lineup Edge'].min()) / (portfolio['Lineup Edge'].max() - portfolio['Lineup Edge'].min()) - max_edge
portfolio['Weighted Own'] = portfolio[own_columns].apply(calculate_weighted_ownership_wrapper, axis=1)
portfolio['Geomean'] = np.power((portfolio[own_columns] * 100).product(axis=1), 1 / len(own_columns))
# Calculate similarity score based on actual player selection
portfolio['Diversity'] = calculate_player_similarity_score_chunked(portfolio, player_columns)
# check_portfolio = portfolio.copy()
portfolio = portfolio.drop(columns=dup_count_columns)
portfolio = portfolio.drop(columns=own_columns)
portfolio = portfolio.drop(columns=calc_columns)
int16_columns_stacks = ['Dupes', 'Size', 'salary']
int16_columns_nstacks = ['Dupes', 'salary']
float32_columns = ['median', 'Own', 'Finish_percentile', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
try:
portfolio[int16_columns_stacks] = portfolio[int16_columns_stacks].astype('uint16')
except:
pass
try:
portfolio[int16_columns_nstacks] = portfolio[int16_columns_nstacks].astype('uint16')
except:
pass
if sport_var != 'LOL':
try:
portfolio[float32_columns] = portfolio[float32_columns].astype('float32')
except:
pass
return portfolio
|