File size: 25,763 Bytes
a35b524
 
 
 
c7e2afa
4390bf0
197d1b2
a35b524
46a28f1
5dc36a5
46a28f1
5dc36a5
 
46a28f1
5dc36a5
 
46a28f1
5dc36a5
46a28f1
 
f978f29
46a28f1
 
5dc36a5
 
46a28f1
5dc36a5
 
46a28f1
5dc36a5
 
46a28f1
5dc36a5
46a28f1
 
 
 
5dc36a5
46a28f1
606905f
5dc36a5
197d1b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a28f1
dd908a8
46a28f1
dd908a8
 
46a28f1
dd908a8
 
46a28f1
 
 
 
 
 
ebc0082
dd908a8
ebc0082
46a28f1
ebc0082
46a28f1
dd908a8
1fe4ec0
46a28f1
 
1fe4ec0
 
 
 
 
039bb05
 
 
 
46a28f1
 
039bb05
 
 
ebc0082
 
039bb05
ebc0082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a28f1
 
 
dd908a8
 
 
46a28f1
42c2829
a35b524
 
 
 
 
 
 
 
 
f8c0a84
 
 
 
 
a35b524
 
2d5437b
5481883
 
 
 
 
 
 
 
 
 
 
 
 
 
197d1b2
5481883
197d1b2
 
 
 
 
 
2d5437b
5481883
 
 
 
 
 
 
197d1b2
a35b524
5481883
197d1b2
 
 
 
 
5481883
 
 
 
 
 
 
 
 
 
 
 
 
84507a0
8714492
f8c0a84
75b26b6
 
feb995d
5481883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197d1b2
5481883
a35b524
 
197d1b2
 
 
 
 
a35b524
46a28f1
 
 
 
 
b8a4bc2
5481883
42c2829
a35b524
 
 
 
 
5481883
42c2829
5481883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197d1b2
a35b524
5481883
 
197d1b2
 
 
 
 
 
5481883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35b524
 
42c2829
 
 
 
 
 
a35b524
42c2829
a35b524
5481883
a35b524
 
 
5481883
c283108
dd908a8
c283108
a35b524
 
46a28f1
a35b524
42c2829
a35b524
 
 
 
42c2829
 
a35b524
 
42c2829
 
 
 
 
 
a35b524
42c2829
a35b524
5481883
 
 
 
42c2829
5481883
 
 
 
 
 
2d5437b
b40a05d
a35b524
 
 
 
42c2829
5481883
a35b524
 
42c2829
 
 
 
 
 
a35b524
42c2829
a35b524
42c2829
a35b524
 
 
 
 
 
 
db75431
a35b524
a92df2e
58073a4
a92df2e
 
 
58073a4
a35b524
 
 
4d63f87
7905ae8
a35b524
 
 
 
 
 
 
 
 
 
 
 
1046e61
a35b524
6c56d9c
a35b524
 
 
635a3c6
6fc172b
7928ec7
 
 
46a28f1
50fa4f0
c283108
86bfc9c
b4a377f
24bf5c9
b82741e
 
 
46a28f1
 
 
 
 
 
 
 
64064b9
 
46a28f1
64064b9
 
37de66c
 
 
 
 
24bf5c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import streamlit as st
import numpy as np
import pandas as pd
import time
import math
from difflib import SequenceMatcher
import scipy.stats

def calculate_weighted_ownership_vectorized(ownership_array):
    """
    Vectorized version of calculate_weighted_ownership using NumPy operations.
    
    Args:
        ownership_array: 2D array of ownership values (rows x players)
        
    Returns:
        array: Calculated weighted ownership values for each row
    """
    # Convert percentages to decimals and handle NaN values
    ownership_array = np.where(np.isnan(ownership_array), 0, ownership_array) / 100
    
    # Calculate row means
    row_means = np.mean(ownership_array, axis=1, keepdims=True)
    
    # Calculate average of each value with the overall mean
    value_means = (ownership_array + row_means) / 2
    
    # Take average of all those means
    avg_of_means = np.mean(value_means, axis=1)
    
    # Multiply by count of values
    weighted = avg_of_means * ownership_array.shape[1]
    
    # Subtract (max - min) for each row
    row_max = np.max(ownership_array, axis=1)
    row_min = np.min(ownership_array, axis=1)
    weighted = weighted - (row_max - row_min)
    
    # Convert back to percentage form
    return weighted * 10000

def calculate_flex_ranks_efficient(portfolio, start_col, end_col, maps_dict, map_key='own_map'):
    """Memory-efficient replacement for pd.concat + rank operations"""
    n_rows = len(portfolio)
    n_cols = end_col - start_col
    
    # Pre-allocate result arrays
    all_values = np.zeros(n_rows * n_cols, dtype=np.float32)
    
    # Fill values column by column
    for i, col_idx in enumerate(range(start_col, end_col)):
        start_idx = i * n_rows
        end_idx = (i + 1) * n_rows
        all_values[start_idx:end_idx] = portfolio.iloc[:, col_idx].map(maps_dict[map_key]).values
    
    # Calculate percentile ranks efficiently
    ranks = scipy.stats.rankdata(all_values, method='average') / len(all_values)
    
    # Reshape back to individual column ranks
    result_ranks = {}
    for i in range(n_cols):
        start_idx = i * n_rows
        end_idx = (i + 1) * n_rows
        result_ranks[i] = ranks[start_idx:end_idx]
    
    return result_ranks

def calculate_weighted_ownership_wrapper(row_ownerships):
    """
    Wrapper function for the original calculate_weighted_ownership to work with Pandas .apply()
    
    Args:
        row_ownerships: Series containing ownership values in percentage form
        
    Returns:
        float: Calculated weighted ownership value
    """
    # Convert Series to 2D array for vectorized function
    ownership_array = row_ownerships.values.reshape(1, -1)
    return calculate_weighted_ownership_vectorized(ownership_array)[0]

def calculate_player_similarity_score_chunked(portfolio, player_columns, chunk_size=1000):
    """
    Memory-efficient version that processes similarities in chunks
    """
    # Same setup as before
    player_data = portfolio[player_columns].astype(str).fillna('').values
    
    all_players = set()
    for row in player_data:
        for val in row:
            if isinstance(val, str) and val.strip() != '':
                all_players.add(val)
    
    player_to_id = {player: idx for idx, player in enumerate(sorted(all_players))}
    
    n_players = len(all_players)
    n_rows = len(portfolio)
    binary_matrix = np.zeros((n_rows, n_players), dtype=np.int8)
    
    for i, row in enumerate(player_data):
        for val in row:
            if isinstance(val, str) and str(val).strip() != '' and str(val) in player_to_id:
                binary_matrix[i, player_to_id[str(val)]] = 1
    
    # Process similarities in chunks to avoid massive matrices
    similarity_scores = np.zeros(n_rows)
    
    for i in range(0, n_rows, chunk_size):
        end_i = min(i + chunk_size, n_rows)
        chunk_binary = binary_matrix[i:end_i]
        
        # Calculate similarities for this chunk only
        intersection = np.dot(chunk_binary, binary_matrix.T)
        chunk_row_sums = np.sum(chunk_binary, axis=1)
        all_row_sums = np.sum(binary_matrix, axis=1)
        
        union = chunk_row_sums[:, np.newaxis] + all_row_sums - intersection
        
        with np.errstate(divide='ignore', invalid='ignore'):
            jaccard_sim = np.divide(intersection, union, 
                                  out=np.zeros_like(intersection, dtype=float), 
                                  where=union != 0)
        
        jaccard_dist = 1 - jaccard_sim
        
        # Exclude self-comparison and calculate average
        for j in range(len(jaccard_dist)):
            actual_idx = i + j
            jaccard_dist[j, actual_idx] = 0  # Exclude self
            
        similarity_scores[i:end_i] = np.sum(jaccard_dist, axis=1) / (n_rows - 1)
    
    # Normalize
    score_range = similarity_scores.max() - similarity_scores.min()
    if score_range > 0:
        similarity_scores = (similarity_scores - similarity_scores.min()) / score_range
    
    return similarity_scores

# Keep the original function for backward compatibility
def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, strength_var, sport_var, max_salary):
    if strength_var == 'Weak':
        dupes_multiplier = .75
        percentile_multiplier = .90
    elif strength_var == 'Average':
        dupes_multiplier = 1.00
        percentile_multiplier = 1.00
    elif strength_var == 'Sharp':
        dupes_multiplier = 1.25
        percentile_multiplier = 1.10
    
    if sport_var == 'NFL':
        own_baseline = 180
    else:
        own_baseline = 120
    max_ownership = max(maps_dict['own_map'].values()) / 100
    average_ownership = np.mean(list(maps_dict['own_map'].values())) / 100

    if type_var == 'Showdown':
        if sport_var == 'GOLF':
            dup_count_columns = ['FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank', 'FLEX6_Own_percent_rank']
            own_columns = ['FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own', 'FLEX6_Own']
        else:
            dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
            own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
        calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
        # Get the original player columns (first 6 columns excluding salary, median, Own)
        player_columns = [col for col in portfolio.columns[:6] if col not in ['salary', 'median', 'Own']]
        n_rows = len(portfolio)
        
        # Assign ranks back to individual columns using the same rank scale
        if sport_var == 'GOLF':
            flex_ranks = calculate_flex_ranks_efficient(portfolio, 1, 7, maps_dict)

            portfolio['FLEX1_Own_percent_rank'] = flex_ranks[0]
            portfolio['FLEX2_Own_percent_rank'] = flex_ranks[1]  
            portfolio['FLEX3_Own_percent_rank'] = flex_ranks[2]
            portfolio['FLEX4_Own_percent_rank'] = flex_ranks[3]
            portfolio['FLEX5_Own_percent_rank'] = flex_ranks[4]
            portfolio['FLEX6_Own_percent_rank'] = flex_ranks[5]

            portfolio['FLEX1_Own'] = portfolio.iloc[:,0].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX2_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX3_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX4_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX5_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX6_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100
        else:
            flex_ranks = calculate_flex_ranks_efficient(portfolio, 1, 6, maps_dict)
            
            portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
            portfolio['FLEX1_Own_percent_rank'] = flex_ranks[0]
            portfolio['FLEX2_Own_percent_rank'] = flex_ranks[1]  
            portfolio['FLEX3_Own_percent_rank'] = flex_ranks[2]
            portfolio['FLEX4_Own_percent_rank'] = flex_ranks[3]
            portfolio['FLEX5_Own_percent_rank'] = flex_ranks[4]

            portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100
            portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100

        portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
        portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
        portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
        portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
        
        # Calculate dupes formula (in progress still)
        portfolio['dupes_calc'] = ((portfolio['own_product'] + ((portfolio['CPT_Own_percent_rank'] - .50) / 1000) + ((portfolio['Own'] / 6) / (max_salary / 2))) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (max_salary - portfolio['Own'])) / 100) - ((max_salary - portfolio['salary']) / 100)
        portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (own_baseline + (Contest_Size / 1000)))
        portfolio['dupes_calc'] = ((((portfolio['salary'] / (max_salary * 0.98)) - 1)*(max_salary / 10000)) + 1) * portfolio['dupes_calc']
        portfolio['dupes_calc'] = portfolio['dupes_calc'] * ((portfolio['CPT_Own_percent_rank'] + .50) / (portfolio['Own'] / 110))
        
        # Round and handle negative values
        portfolio['Dupes'] = np.where(
            portfolio['salary'] == max_salary,
            portfolio['dupes_calc'] + (portfolio['dupes_calc'] * .10), 
            portfolio['dupes_calc']
        )
        portfolio['Dupes'] = np.where(
            np.round(portfolio['Dupes'], 0) <= 0,
            0, 
            np.round(portfolio['Dupes'], 0) - 1
        )
    elif type_var == 'Classic':
        if sport_var == 'CS2':
            dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
            own_columns = ['CPT_Own', 'FLEX1_Own', 'FLEX2_Own', 'FLEX3_Own', 'FLEX4_Own', 'FLEX5_Own']
            calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
            # Get the original player columns (first 6 columns excluding salary, median, Own)
            player_columns = [col for col in portfolio.columns[:6] if col not in ['salary', 'median', 'Own']]

            n_rows = len(portfolio)

            flex_ranks = calculate_flex_ranks_efficient(portfolio, 1, 6, maps_dict)

            # Assign ranks back to individual columns using the same rank scale
            portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
            portfolio['FLEX1_Own_percent_rank'] = flex_ranks[0]
            portfolio['FLEX2_Own_percent_rank'] = flex_ranks[1]  
            portfolio['FLEX3_Own_percent_rank'] = flex_ranks[2]
            portfolio['FLEX4_Own_percent_rank'] = flex_ranks[3]
            portfolio['FLEX5_Own_percent_rank'] = flex_ranks[4]

            portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100
            portfolio['FLEX1_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX2_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX3_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX4_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['FLEX5_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100

            portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) * max(Contest_Size / 10000, 1)
            portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
            portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
            portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
            
            # Calculate dupes formula
            portfolio['dupes_calc'] = ((portfolio['own_product'] * 10) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (max_salary - portfolio['Own'])) / 50) - ((max_salary - portfolio['salary']) / 50)
            portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (90 + (Contest_Size / 1000)))

            # Round and handle negative values
            portfolio['Dupes'] = np.where(
                portfolio['salary'] == max_salary,
                portfolio['dupes_calc'] + (portfolio['dupes_calc'] * .10), 
                portfolio['dupes_calc']
            )
            portfolio['Dupes'] = np.where(
                np.round(portfolio['Dupes'], 0) <= 0,
                0, 
                np.round(portfolio['Dupes'], 0) - 1
            )
        if sport_var == 'LOL':
            dup_count_columns = ['CPT_Own_percent_rank', 'TOP_Own_percent_rank', 'JNG_Own_percent_rank', 'MID_Own_percent_rank', 'ADC_Own_percent_rank', 'SUP_Own_percent_rank', 'Team_Own_percent_rank']
            own_columns = ['CPT_Own', 'TOP_Own', 'JNG_Own', 'MID_Own', 'ADC_Own', 'SUP_Own', 'Team_Own']
            calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
            # Get the original player columns (first 6 columns excluding salary, median, Own)
            player_columns = [col for col in portfolio.columns[:7] if col not in ['salary', 'median', 'Own']]
            
            n_rows = len(portfolio)

            flex_ranks = calculate_flex_ranks_efficient(portfolio, 1, 7, maps_dict)
            
            # Assign ranks back to individual columns using the same rank scale
            portfolio['CPT_Own_percent_rank'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).rank(pct=True)
            portfolio['TOP_Own_percent_rank'] = flex_ranks[0]
            portfolio['JNG_Own_percent_rank'] = flex_ranks[1]
            portfolio['MID_Own_percent_rank'] = flex_ranks[2]
            portfolio['ADC_Own_percent_rank'] = flex_ranks[3]
            portfolio['SUP_Own_percent_rank'] = flex_ranks[4]
            portfolio['Team_Own_percent_rank'] = flex_ranks[5]

            portfolio['CPT_Own'] = portfolio.iloc[:,0].map(maps_dict['cpt_own_map']).astype('float32') / 100
            portfolio['TOP_Own'] = portfolio.iloc[:,1].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['JNG_Own'] = portfolio.iloc[:,2].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['MID_Own'] = portfolio.iloc[:,3].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['ADC_Own'] = portfolio.iloc[:,4].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['SUP_Own'] = portfolio.iloc[:,5].map(maps_dict['own_map']).astype('float32') / 100
            portfolio['Team_Own'] = portfolio.iloc[:,6].map(maps_dict['own_map']).astype('float32') / 100

            portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) * max(Contest_Size / 10000, 1)
            portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
            portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
            portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
            
            # Calculate dupes formula
            portfolio['dupes_calc'] = ((portfolio['own_product'] * 10) * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (max_salary - portfolio['Own'])) / 50) - ((max_salary - portfolio['salary']) / 50)
            portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (90 + (Contest_Size / 1000)))

            # Round and handle negative values
            portfolio['Dupes'] = np.where(
                portfolio['salary'] == max_salary,
                portfolio['dupes_calc'] + (portfolio['dupes_calc'] * .10), 
                portfolio['dupes_calc']
            )
            portfolio['Dupes'] = np.where(
                np.round(portfolio['Dupes'], 0) <= 0,
                0, 
                np.round(portfolio['Dupes'], 0) - 1
            )
        elif sport_var == 'GOLF':
            num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
            dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
            own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
            calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
            # Get the original player columns (first num_players columns excluding salary, median, Own)
            player_columns = [col for col in portfolio.columns[:num_players] if col not in ['salary', 'median', 'Own']]
            
            for i in range(1, num_players + 1):
                portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank'])
                portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']).astype('float32') / 100
            
            portfolio['own_product'] = (portfolio[own_columns].product(axis=1)) * max(Contest_Size / 10000, 1)
            portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
            portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
            portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
            
            portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (max_salary - portfolio['Own'])) / 100) - ((max_salary - portfolio['salary']) / 100)
            portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (90 + (Contest_Size / 1000)))
            # Round and handle negative values
            portfolio['Dupes'] = np.where(
                portfolio['salary'] == max_salary,
                portfolio['dupes_calc'] + (portfolio['dupes_calc'] * .10), 
                portfolio['dupes_calc']
            )
            portfolio['Dupes'] = np.where(
                np.round(portfolio['Dupes'], 0) <= 0,
                0, 
                np.round(portfolio['Dupes'], 0) - 1
            )
        else:
            num_players = len([col for col in portfolio.columns if col not in ['salary', 'median', 'Own']])
            dup_count_columns = [f'player_{i}_percent_rank' for i in range(1, num_players + 1)]
            own_columns = [f'player_{i}_own' for i in range(1, num_players + 1)]
            calc_columns = ['own_product', 'own_average', 'own_sum', 'avg_own_rank', 'dupes_calc', 'low_own_count', 'Ref_Proj', 'Max_Proj', 'Min_Proj', 'Avg_Ref', 'own_ratio']
            # Get the original player columns (first num_players columns excluding salary, median, Own)
            player_columns = [col for col in portfolio.columns[:num_players] if col not in ['salary', 'median', 'Own']]
            
            for i in range(1, num_players + 1):
                portfolio[f'player_{i}_percent_rank'] = portfolio.iloc[:,i-1].map(maps_dict['own_percent_rank'])
                portfolio[f'player_{i}_own'] = portfolio.iloc[:,i-1].map(maps_dict['own_map']).astype('float32') / 100
            
            portfolio['own_product'] = (portfolio[own_columns].product(axis=1))
            portfolio['own_average'] = (portfolio['Own'].max() * .33) / 100
            portfolio['own_sum'] = portfolio[own_columns].sum(axis=1)
            portfolio['avg_own_rank'] = portfolio[dup_count_columns].mean(axis=1)
            
            portfolio['dupes_calc'] = (portfolio['own_product'] * portfolio['avg_own_rank']) * Contest_Size + ((portfolio['salary'] - (max_salary - portfolio['Own'])) / 100) - ((max_salary - portfolio['salary']) / 100)
            portfolio['dupes_calc'] = portfolio['dupes_calc'] * dupes_multiplier * (portfolio['Own'] / (90 + (Contest_Size / 1000)))
            # Round and handle negative values
            portfolio['Dupes'] = np.where(
                portfolio['salary'] == max_salary,
                portfolio['dupes_calc'] + (portfolio['dupes_calc'] * .10), 
                portfolio['dupes_calc']
            )
            portfolio['Dupes'] = np.where(
                np.round(portfolio['Dupes'], 0) <= 0,
                0, 
                np.round(portfolio['Dupes'], 0) - 1
            )
                

    portfolio['Dupes'] = np.round(portfolio['Dupes'], 0)
    portfolio['own_ratio'] = np.where(
        portfolio[own_columns].isin([max_ownership]).any(axis=1),
        portfolio['own_sum'] / portfolio['own_average'],
        (portfolio['own_sum'] - max_ownership) / portfolio['own_average']
    )
    percentile_cut_scalar = portfolio['median'].max()
    if type_var == 'Classic':
        if sport_var == 'CS2':
            own_ratio_nerf = 2
        elif sport_var == 'LOL':
            own_ratio_nerf = 2
        else:
            own_ratio_nerf = 1.5
    elif type_var == 'Showdown':
        own_ratio_nerf = 1.5
    portfolio['Finish_percentile'] = portfolio.apply(
        lambda row: .0005 if (row['own_ratio'] - own_ratio_nerf) / ((5 * (row['median'] / percentile_cut_scalar)) / 3) < .0005 
        else ((row['own_ratio'] - own_ratio_nerf) / ((5 * (row['median'] / percentile_cut_scalar)) / 3)) / 2, 
        axis=1
    )
    
    portfolio['Ref_Proj'] = portfolio['median'].max()
    portfolio['Max_Proj'] = portfolio['Ref_Proj'] + 10
    portfolio['Min_Proj'] = portfolio['Ref_Proj'] - 10
    portfolio['Avg_Ref'] = (portfolio['Max_Proj'] + portfolio['Min_Proj']) / 2
    portfolio['Win%'] = (((portfolio['median'] / portfolio['Avg_Ref']) - (0.1 + ((portfolio['Ref_Proj'] - portfolio['median'])/100))) / (Contest_Size / 1000)) / 10
    max_allowed_win = (1 / Contest_Size) * 5
    portfolio['Win%'] = portfolio['Win%'] / portfolio['Win%'].max() * max_allowed_win
    
    portfolio['Finish_percentile'] = portfolio['Finish_percentile'] + .005 + (.005 * (Contest_Size / 10000))
    portfolio['Finish_percentile'] = portfolio['Finish_percentile'] * percentile_multiplier * (portfolio['Own'] / (100 + (Contest_Size / 1000)))
    portfolio['Win%'] = portfolio['Win%'] * (1 - portfolio['Finish_percentile'])
    portfolio['Win%'] = portfolio['Win%'].clip(lower=0, upper=max_allowed_win)
    
    portfolio['low_own_count'] = portfolio[own_columns].apply(lambda row: (row < 0.10).sum(), axis=1)
    portfolio['Finish_percentile'] = portfolio.apply(lambda row: row['Finish_percentile'] if row['low_own_count'] <= 0 else row['Finish_percentile'] / row['low_own_count'], axis=1)
    portfolio['Lineup Edge'] = (portfolio['Win%'] * ((.5 - portfolio['Finish_percentile']) * (Contest_Size / 2.5)))
    # portfolio['Lineup Edge'] = portfolio.apply(lambda row: row['Lineup Edge'] / (row['Dupes'] + 1) if row['Dupes'] > 0 else row['Lineup Edge'], axis=1)
    portfolio['Lineup Edge'] = ((portfolio['Lineup Edge'] - portfolio['Lineup Edge'].mean())) - ((portfolio['Dupes'] - portfolio['Dupes'].mean()) / 50) 
    max_edge = portfolio['Lineup Edge'].max()
    portfolio['Lineup Edge'] = 2 * max_edge * (portfolio['Lineup Edge'] - portfolio['Lineup Edge'].min()) / (portfolio['Lineup Edge'].max() - portfolio['Lineup Edge'].min()) - max_edge
    portfolio['Weighted Own'] = portfolio[own_columns].apply(calculate_weighted_ownership_wrapper, axis=1)
    portfolio['Geomean'] = np.power((portfolio[own_columns] * 100).product(axis=1), 1 / len(own_columns))
    
    # Calculate similarity score based on actual player selection
    portfolio['Diversity'] = calculate_player_similarity_score_chunked(portfolio, player_columns)
    # check_portfolio = portfolio.copy()
    portfolio = portfolio.drop(columns=dup_count_columns)
    portfolio = portfolio.drop(columns=own_columns)
    portfolio = portfolio.drop(columns=calc_columns)
    
    int16_columns_stacks = ['Dupes', 'Size', 'salary']
    int16_columns_nstacks = ['Dupes', 'salary']
    float32_columns = ['median', 'Own', 'Finish_percentile', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']

    try:
        portfolio[int16_columns_stacks] = portfolio[int16_columns_stacks].astype('uint16')
    except:
        pass
    try:
        portfolio[int16_columns_nstacks] = portfolio[int16_columns_nstacks].astype('uint16')
    except:
        pass
    if sport_var != 'LOL':
        try:
            portfolio[float32_columns] = portfolio[float32_columns].astype('float32')
        except:
            pass
    return portfolio