James McCool
commited on
Commit
·
24bf5c9
1
Parent(s):
75b26b6
finalized dupe math, maintaining on staging
Browse files- app.py +1 -2
- global_func/predict_dupes.py +2 -12
app.py
CHANGED
@@ -1171,11 +1171,10 @@ if selected_tab == 'Manage Portfolio':
|
|
1171 |
st.session_state['working_frame']['median'] = st.session_state['working_frame']['median'].astype('float32')
|
1172 |
st.session_state['working_frame']['salary'] = st.session_state['working_frame']['salary'].astype('uint16')
|
1173 |
|
1174 |
-
st.session_state['base_frame']
|
1175 |
st.session_state['working_frame'] = st.session_state['base_frame'].copy()
|
1176 |
# st.session_state['highest_owned_teams'] = st.session_state['projections_df'][~st.session_state['projections_df']['position'].isin(['P', 'SP'])].groupby('team')['ownership'].sum().sort_values(ascending=False).head(3).index.tolist()
|
1177 |
# st.session_state['highest_owned_pitchers'] = st.session_state['projections_df'][st.session_state['projections_df']['position'].isin(['P', 'SP'])]['player_names'].sort_values(by='ownership', ascending=False).head(3).tolist()
|
1178 |
-
# st.table(check_frame)
|
1179 |
|
1180 |
#set some maxes for trimming variables
|
1181 |
if 'trimming_dict_maxes' not in st.session_state:
|
|
|
1171 |
st.session_state['working_frame']['median'] = st.session_state['working_frame']['median'].astype('float32')
|
1172 |
st.session_state['working_frame']['salary'] = st.session_state['working_frame']['salary'].astype('uint16')
|
1173 |
|
1174 |
+
st.session_state['base_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
|
1175 |
st.session_state['working_frame'] = st.session_state['base_frame'].copy()
|
1176 |
# st.session_state['highest_owned_teams'] = st.session_state['projections_df'][~st.session_state['projections_df']['position'].isin(['P', 'SP'])].groupby('team')['ownership'].sum().sort_values(ascending=False).head(3).index.tolist()
|
1177 |
# st.session_state['highest_owned_pitchers'] = st.session_state['projections_df'][st.session_state['projections_df']['position'].isin(['P', 'SP'])]['player_names'].sort_values(by='ownership', ascending=False).head(3).tolist()
|
|
|
1178 |
|
1179 |
#set some maxes for trimming variables
|
1180 |
if 'trimming_dict_maxes' not in st.session_state:
|
global_func/predict_dupes.py
CHANGED
@@ -207,13 +207,6 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
207 |
0,
|
208 |
np.round(portfolio['Dupes'], 0) - 1
|
209 |
)
|
210 |
-
|
211 |
-
print(portfolio['own_product'])
|
212 |
-
print(portfolio['avg_own_rank'])
|
213 |
-
print(portfolio['salary'])
|
214 |
-
print(portfolio['Own'])
|
215 |
-
print(portfolio['dupes_calc'])
|
216 |
-
print(portfolio['Dupes'])
|
217 |
elif type_var == 'Classic':
|
218 |
if sport_var == 'CS2':
|
219 |
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
|
@@ -431,7 +424,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
431 |
|
432 |
# Calculate similarity score based on actual player selection
|
433 |
portfolio['Diversity'] = calculate_player_similarity_score_vectorized(portfolio, player_columns)
|
434 |
-
check_portfolio = portfolio.copy()
|
435 |
portfolio = portfolio.drop(columns=dup_count_columns)
|
436 |
portfolio = portfolio.drop(columns=own_columns)
|
437 |
portfolio = portfolio.drop(columns=calc_columns)
|
@@ -440,8 +433,6 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
440 |
int16_columns_nstacks = ['Dupes', 'salary']
|
441 |
float32_columns = ['median', 'Own', 'Finish_percentile', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
|
442 |
|
443 |
-
print(portfolio.columns)
|
444 |
-
print(portfolio.head(10))
|
445 |
try:
|
446 |
portfolio[int16_columns_stacks] = portfolio[int16_columns_stacks].astype('uint16')
|
447 |
except:
|
@@ -455,5 +446,4 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
|
|
455 |
portfolio[float32_columns] = portfolio[float32_columns].astype('float32')
|
456 |
except:
|
457 |
pass
|
458 |
-
|
459 |
-
return portfolio, check_portfolio
|
|
|
207 |
0,
|
208 |
np.round(portfolio['Dupes'], 0) - 1
|
209 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
elif type_var == 'Classic':
|
211 |
if sport_var == 'CS2':
|
212 |
dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
|
|
|
424 |
|
425 |
# Calculate similarity score based on actual player selection
|
426 |
portfolio['Diversity'] = calculate_player_similarity_score_vectorized(portfolio, player_columns)
|
427 |
+
# check_portfolio = portfolio.copy()
|
428 |
portfolio = portfolio.drop(columns=dup_count_columns)
|
429 |
portfolio = portfolio.drop(columns=own_columns)
|
430 |
portfolio = portfolio.drop(columns=calc_columns)
|
|
|
433 |
int16_columns_nstacks = ['Dupes', 'salary']
|
434 |
float32_columns = ['median', 'Own', 'Finish_percentile', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
|
435 |
|
|
|
|
|
436 |
try:
|
437 |
portfolio[int16_columns_stacks] = portfolio[int16_columns_stacks].astype('uint16')
|
438 |
except:
|
|
|
446 |
portfolio[float32_columns] = portfolio[float32_columns].astype('float32')
|
447 |
except:
|
448 |
pass
|
449 |
+
return portfolio
|
|