James McCool commited on
Commit
24bf5c9
·
1 Parent(s): 75b26b6

finalized dupe math, maintaining on staging

Browse files
Files changed (2) hide show
  1. app.py +1 -2
  2. global_func/predict_dupes.py +2 -12
app.py CHANGED
@@ -1171,11 +1171,10 @@ if selected_tab == 'Manage Portfolio':
1171
  st.session_state['working_frame']['median'] = st.session_state['working_frame']['median'].astype('float32')
1172
  st.session_state['working_frame']['salary'] = st.session_state['working_frame']['salary'].astype('uint16')
1173
 
1174
- st.session_state['base_frame'], check_frame = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
1175
  st.session_state['working_frame'] = st.session_state['base_frame'].copy()
1176
  # st.session_state['highest_owned_teams'] = st.session_state['projections_df'][~st.session_state['projections_df']['position'].isin(['P', 'SP'])].groupby('team')['ownership'].sum().sort_values(ascending=False).head(3).index.tolist()
1177
  # st.session_state['highest_owned_pitchers'] = st.session_state['projections_df'][st.session_state['projections_df']['position'].isin(['P', 'SP'])]['player_names'].sort_values(by='ownership', ascending=False).head(3).tolist()
1178
- # st.table(check_frame)
1179
 
1180
  #set some maxes for trimming variables
1181
  if 'trimming_dict_maxes' not in st.session_state:
 
1171
  st.session_state['working_frame']['median'] = st.session_state['working_frame']['median'].astype('float32')
1172
  st.session_state['working_frame']['salary'] = st.session_state['working_frame']['salary'].astype('uint16')
1173
 
1174
+ st.session_state['base_frame'] = predict_dupes(st.session_state['working_frame'], st.session_state['map_dict'], site_var, type_var, Contest_Size, strength_var, sport_var, salary_max)
1175
  st.session_state['working_frame'] = st.session_state['base_frame'].copy()
1176
  # st.session_state['highest_owned_teams'] = st.session_state['projections_df'][~st.session_state['projections_df']['position'].isin(['P', 'SP'])].groupby('team')['ownership'].sum().sort_values(ascending=False).head(3).index.tolist()
1177
  # st.session_state['highest_owned_pitchers'] = st.session_state['projections_df'][st.session_state['projections_df']['position'].isin(['P', 'SP'])]['player_names'].sort_values(by='ownership', ascending=False).head(3).tolist()
 
1178
 
1179
  #set some maxes for trimming variables
1180
  if 'trimming_dict_maxes' not in st.session_state:
global_func/predict_dupes.py CHANGED
@@ -207,13 +207,6 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
207
  0,
208
  np.round(portfolio['Dupes'], 0) - 1
209
  )
210
-
211
- print(portfolio['own_product'])
212
- print(portfolio['avg_own_rank'])
213
- print(portfolio['salary'])
214
- print(portfolio['Own'])
215
- print(portfolio['dupes_calc'])
216
- print(portfolio['Dupes'])
217
  elif type_var == 'Classic':
218
  if sport_var == 'CS2':
219
  dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
@@ -431,7 +424,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
431
 
432
  # Calculate similarity score based on actual player selection
433
  portfolio['Diversity'] = calculate_player_similarity_score_vectorized(portfolio, player_columns)
434
- check_portfolio = portfolio.copy()
435
  portfolio = portfolio.drop(columns=dup_count_columns)
436
  portfolio = portfolio.drop(columns=own_columns)
437
  portfolio = portfolio.drop(columns=calc_columns)
@@ -440,8 +433,6 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
440
  int16_columns_nstacks = ['Dupes', 'salary']
441
  float32_columns = ['median', 'Own', 'Finish_percentile', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
442
 
443
- print(portfolio.columns)
444
- print(portfolio.head(10))
445
  try:
446
  portfolio[int16_columns_stacks] = portfolio[int16_columns_stacks].astype('uint16')
447
  except:
@@ -455,5 +446,4 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
455
  portfolio[float32_columns] = portfolio[float32_columns].astype('float32')
456
  except:
457
  pass
458
- #printing a check frame
459
- return portfolio, check_portfolio
 
207
  0,
208
  np.round(portfolio['Dupes'], 0) - 1
209
  )
 
 
 
 
 
 
 
210
  elif type_var == 'Classic':
211
  if sport_var == 'CS2':
212
  dup_count_columns = ['CPT_Own_percent_rank', 'FLEX1_Own_percent_rank', 'FLEX2_Own_percent_rank', 'FLEX3_Own_percent_rank', 'FLEX4_Own_percent_rank', 'FLEX5_Own_percent_rank']
 
424
 
425
  # Calculate similarity score based on actual player selection
426
  portfolio['Diversity'] = calculate_player_similarity_score_vectorized(portfolio, player_columns)
427
+ # check_portfolio = portfolio.copy()
428
  portfolio = portfolio.drop(columns=dup_count_columns)
429
  portfolio = portfolio.drop(columns=own_columns)
430
  portfolio = portfolio.drop(columns=calc_columns)
 
433
  int16_columns_nstacks = ['Dupes', 'salary']
434
  float32_columns = ['median', 'Own', 'Finish_percentile', 'Win%', 'Lineup Edge', 'Weighted Own', 'Geomean', 'Diversity']
435
 
 
 
436
  try:
437
  portfolio[int16_columns_stacks] = portfolio[int16_columns_stacks].astype('uint16')
438
  except:
 
446
  portfolio[float32_columns] = portfolio[float32_columns].astype('float32')
447
  except:
448
  pass
449
+ return portfolio