James McCool commited on
Commit
86bfc9c
·
1 Parent(s): 6fc172b

Refactor similarity score calculation in predict_dupes.py by removing the reference to duplicate adjustments. This change clarifies the computation of player selection diversity while preserving the overall prediction model's integrity.

Browse files
Files changed (1) hide show
  1. global_func/predict_dupes.py +1 -1
global_func/predict_dupes.py CHANGED
@@ -425,7 +425,7 @@ def predict_dupes(portfolio, maps_dict, site_var, type_var, Contest_Size, streng
425
  portfolio['Weighted Own'] = portfolio[own_columns].apply(calculate_weighted_ownership_wrapper, axis=1)
426
  portfolio['Geomean'] = np.power((portfolio[own_columns] * 100).product(axis=1), 1 / len(own_columns))
427
 
428
- # Calculate similarity score based on actual player selection and dupes
429
  portfolio['Diversity'] = calculate_player_similarity_score_chunked(portfolio, player_columns)
430
  # check_portfolio = portfolio.copy()
431
  portfolio = portfolio.drop(columns=dup_count_columns)
 
425
  portfolio['Weighted Own'] = portfolio[own_columns].apply(calculate_weighted_ownership_wrapper, axis=1)
426
  portfolio['Geomean'] = np.power((portfolio[own_columns] * 100).product(axis=1), 1 / len(own_columns))
427
 
428
+ # Calculate similarity score based on actual player selection
429
  portfolio['Diversity'] = calculate_player_similarity_score_chunked(portfolio, player_columns)
430
  # check_portfolio = portfolio.copy()
431
  portfolio = portfolio.drop(columns=dup_count_columns)