File size: 18,452 Bytes
158eaa8
18eaa68
67af571
158eaa8
 
 
 
 
 
72c43b1
158eaa8
8e462c9
bdf6978
 
 
 
 
 
 
 
 
 
8e462c9
 
 
 
 
 
 
 
05f2b9c
bdf6978
 
 
 
 
 
 
 
 
 
 
 
05f2b9c
 
 
 
8e462c9
 
 
d5f1d98
 
 
 
 
 
 
 
 
 
 
 
8e462c9
 
 
bdf6978
 
 
 
 
 
 
 
 
 
8e462c9
 
 
 
 
 
 
f35aa8d
 
8e462c9
 
 
b9049ff
 
8e462c9
 
 
b9049ff
 
8e462c9
 
 
b9049ff
 
8e462c9
 
ad242a2
bdf6978
 
 
 
 
 
8e462c9
 
ad242a2
8e462c9
 
 
 
bdf6978
 
 
 
 
 
 
 
8e462c9
ad242a2
8e462c9
ad242a2
8e462c9
 
 
 
 
 
 
 
 
 
 
 
7f0bbb5
 
8e462c9
7f0bbb5
8e462c9
05f2b9c
 
8e462c9
 
 
 
8913211
158eaa8
aef223f
 
7dd1418
f4f6da8
 
 
 
7dd1418
f4f6da8
 
 
 
abd4533
 
 
8b34fed
c0ae0e3
 
 
 
 
 
abd4533
 
 
 
158eaa8
 
8913211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efbfb51
158eaa8
0a58221
158eaa8
 
2371c4f
 
 
 
4399601
3076618
158eaa8
 
efbfb51
3ff610a
 
 
1b89d01
6029c0b
 
efbfb51
 
 
 
f93672b
2344dbb
 
 
 
b452fab
38f865e
9034a8a
 
 
 
efbfb51
9034a8a
3a20f4f
9e53f8f
 
bcf121e
3a20f4f
 
 
 
 
 
 
38f865e
9034a8a
 
 
 
 
 
 
 
87bb04e
9034a8a
298e2c8
 
 
 
9034a8a
 
 
076e322
 
 
 
 
5fe15cf
41b98e8
 
9034a8a
 
 
298e2c8
 
 
 
 
 
 
a0d4812
298e2c8
9034a8a
 
 
 
 
 
 
 
 
 
87bb04e
 
9034a8a
 
efbfb51
2fd6d6d
3a20f4f
5fe15cf
f13359a
3a20f4f
dc53b72
 
 
 
 
 
 
 
 
 
 
ad242a2
dc53b72
 
 
 
 
9034a8a
 
 
 
 
 
efbfb51
c5323ea
9034a8a
 
 
dc53b72
 
41b98e8
 
9034a8a
 
8ea397a
 
 
 
 
 
 
 
bce8275
3820d21
583a033
5fe15cf
 
 
 
 
ad242a2
583a033
ce96fd8
583a033
 
9034a8a
ce96fd8
9034a8a
ce96fd8
 
158eaa8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import random
import numpy as np
import math

#### Goal is to choose a player and adjust the amount of lineups that have them
#### First thing you need to do is find comparable players in the projections, so any player in the projections that is within $500 of the player and within 10% of the projection
#### Take that list of players and create a list that can be accessed for random insertion into the portfolio
#### Find the player and the amount of rows that contain them and then find an exposure rate which is the percentage of total rows
#### Use the exposure target argument and try to replace the player from as many rows as necessary to be at or just under the target
#### makes sure to check if the player is eligible for the position before replacing them

def check_nba_position_eligibility(column_name, player_positions):
    if 'PG' in column_name:
        return 'PG' in player_positions
    elif 'SG' in column_name:
        return 'SG' in player_positions
    elif 'SF' in column_name:
        return 'SF' in player_positions
    elif 'PF' in column_name:
        return 'PF' in player_positions
    elif 'C' in column_name:
        return 'C' in player_positions
    elif 'G' in column_name:
        return any(pos in ['PG', 'SG'] for pos in player_positions)
    elif 'F' in column_name:
        return any(pos in ['SF', 'PF'] for pos in player_positions)
    elif 'UTIL' in column_name:
        return True  # UTIL can be any position
    return False

def check_lol_position_eligibility(column_name, player_positions):
    if 'TOP' in column_name:
        return 'TOP' in player_positions
    elif 'JNG' in column_name:
        return 'JNG' in player_positions
    elif 'MID' in column_name:
        return 'MID' in player_positions
    elif 'ADC' in column_name:
        return 'ADC' in player_positions
    elif 'SUP' in column_name:
        return 'SUP' in player_positions
    elif 'Team' in column_name:
        return 'Team' in player_positions
    elif 'CPT' in column_name:
        return any(pos in ['TOP', 'JNG', 'MID', 'ADC', 'SUP'] for pos in player_positions)
    return False

def check_mlb_position_eligibility(column_name, player_positions):
    if any(pos in column_name for pos in ['P', 'SP', 'RP']):
        return any(pos in ['P', 'SP', 'RP'] for pos in player_positions)
    elif 'C' in column_name:
        return 'C' in player_positions
    elif '1B' in column_name:
        return '1B' in player_positions
    elif '2B' in column_name:
        return '2B' in player_positions
    elif '3B' in column_name:
        return '3B' in player_positions
    elif 'SS' in column_name:
        return 'SS' in player_positions
    elif 'OF' in column_name:
        return 'OF' in player_positions
    return False

def check_nfl_position_eligibility(column_name, player_positions):
    if 'QB' in column_name:
        return 'QB' in player_positions
    elif 'RB' in column_name:
        return 'RB' in player_positions
    elif 'WR' in column_name:
        return 'WR' in player_positions
    elif 'TE' in column_name:
        return 'TE' in player_positions
    elif 'DST' in column_name:
        return 'DST' in player_positions
    elif 'FLEX' in column_name:
        return any(pos in ['RB', 'WR', 'TE'] for pos in player_positions)
    elif 'UTIL' in column_name:
        return any(pos in ['RB', 'WR', 'TE'] for pos in player_positions)
    return False

def check_golf_position_eligibility(column_name, player_positions):
    if 'FLEX' in column_name:
        return any(pos in ['G'] for pos in player_positions)
    return True

def check_tennis_position_eligibility(column_name, player_positions):
    if 'FLEX' in column_name:
        return any(pos in ['T'] for pos in player_positions)
    return True

def check_mma_position_eligibility(column_name, player_positions):
    if 'FLEX' in column_name:
        return any(pos in ['F'] for pos in player_positions)
    return True

def check_nascar_position_eligibility(column_name, player_positions):
    if 'FLEX' in column_name:
        return any(pos in ['D'] for pos in player_positions)
    return True

def check_ncaaf_position_eligibility(column_name, player_positions):
    if 'QB' in column_name:
        return 'QB' in player_positions
    elif 'RB' in column_name:
        return 'RB' in player_positions
    elif 'WR' in column_name:
        return 'WR' in player_positions
    elif 'FLEX' in column_name:
        return any(pos in ['RB', 'WR'] for pos in player_positions)
    elif 'SFLEX' in column_name:
        return any(pos in ['RB', 'WR', 'QB'] for pos in player_positions)
    return False

def check_nhl_position_eligibility(column_name, player_positions):
    if 'C' in column_name:
        return 'C' in player_positions
    elif 'W' in column_name:
        return 'W' in player_positions
    elif 'D' in column_name:
        return 'D' in player_positions
    elif 'G' in column_name:
        return 'G' in player_positions
    elif 'FLEX' in column_name:
        return any(pos in ['C', 'W', 'D'] for pos in player_positions)
    elif 'UTIL' in column_name:
        return any(pos in ['C', 'W', 'D'] for pos in player_positions)
    return False

def check_position_eligibility(sport, column_name, player_positions):
    if sport == 'NBA':
        return check_nba_position_eligibility(column_name, player_positions)
    elif sport == 'MLB':
        return check_mlb_position_eligibility(column_name, player_positions)
    elif sport == 'NFL':
        return check_nfl_position_eligibility(column_name, player_positions)
    elif sport == 'NHL':
        return check_nhl_position_eligibility(column_name, player_positions)
    elif sport == 'MMA':
        return check_mma_position_eligibility(column_name, player_positions)
    elif sport == 'GOLF':
        return check_golf_position_eligibility(column_name, player_positions)
    elif sport == 'TENNIS':
        return check_tennis_position_eligibility(column_name, player_positions)
    elif sport == 'LOL':
        return check_lol_position_eligibility(column_name, player_positions)
    else:
        # Default fallback - assume exact position match
        return column_name in player_positions

def exposure_spread(working_frame, exposure_player, exposure_target, ignore_stacks, remove_teams, specific_replacements, specific_columns, projections_df, sport_var, type_var, salary_max, stacking_sports):
    comparable_players = projections_df[projections_df['player_names'] == exposure_player]
    
    comparable_players = comparable_players.reset_index(drop=True)
    comp_salary_high = comparable_players['salary'][0]
    if type_var == 'Showdown':
        comp_salary_low = comparable_players['salary'][0] - 1000
    else:
        comp_salary_low = comparable_players['salary'][0] - 500
    comp_projection_high = comparable_players['median'][0]
    if type_var == 'Showdown':
        comp_projection_low = comparable_players['median'][0] - (comparable_players['median'][0] * .5)
    else:
        comp_projection_low = comparable_players['median'][0] - (comparable_players['median'][0] * .75)
    # players can be eligible at multiple positions, so we need to find all the positions the player is eligible at
    # the position column can have positions designated as 1B/OF which means they are eligible at 1B and OF
    comp_player_position = comparable_players['position'].tolist()
    comp_team = comparable_players['team'].tolist()
    try:
        comp_player_position = [pos.split('/') for pos in comp_player_position]
        comp_player_position = [item for sublist in comp_player_position for item in sublist]
        comp_player_position = list(set(comp_player_position))
    except:
        comp_player_position = comparable_players['position'].tolist()

    def has_position_overlap(player_positions, target_positions):
        player_pos_list = player_positions.split('/')
        return any(pos in target_positions for pos in player_pos_list)

    # find the exposure rate of the player in the working frame
    if specific_columns != []:
        player_mask = working_frame[specific_columns].apply(
            lambda row: exposure_player in list(row), axis=1
        )
    else:
        player_mask = working_frame[working_frame.columns].apply(
            lambda row: exposure_player in list(row), axis=1
        )
    
    if specific_columns != []:
        replace_mask = working_frame[specific_columns].apply(
                lambda row: exposure_player not in list(row), axis=1
            )
    else:
        replace_mask = working_frame[working_frame.columns].apply(
            lambda row: exposure_player not in list(row), axis=1
        )

    player_exposure = player_mask.sum() / len(working_frame)
    replace_exposure = replace_mask.sum() / len(working_frame)

    # find the number of lineups that need to be removed to reach the target exposure
    if exposure_target == 0:
        lineups_to_remove = (player_exposure * len(working_frame))
    else:
        lineups_to_remove = ((player_exposure - exposure_target) * len(working_frame)) * 1.01
        lineups_to_add = ((exposure_target - player_exposure) * (len(working_frame) - (player_exposure * len(working_frame)))) * 1.10
        
    # isolate the rows that contain the player
    player_rows = working_frame[player_mask]
    replace_rows = working_frame[replace_mask]
    if ignore_stacks != []:
        player_rows = player_rows[~player_rows['Stack'].isin(ignore_stacks)]
        replace_rows = replace_rows[~replace_rows['Stack'].isin(ignore_stacks)]
    
    change_counter = 0

    random_row_indices_insert = list(player_rows.index)
    random_row_indices_replace = list(replace_rows.index)
    random.shuffle(random_row_indices_insert)
    random.shuffle(random_row_indices_replace)

    print(player_exposure)
    print(lineups_to_remove)
    print(lineups_to_add)

    # for each row to the the number of lineups to remove, replace with random choice from comparable player list if they can be inserted

    # we will need to use two separate functions here, one for an exposure player who has a lineups to remove above 0 and one for below 0
    # key concept here is if they have a lineups to remove above 0 it means that we are trying to replace them with comparable players
    # if the lineups to remove is below zero it means we want to find comparable players and replace them with the exposure player
    if lineups_to_remove > 0:
        for row in random_row_indices_insert:
            if change_counter < math.ceil(lineups_to_remove):
                if specific_replacements != []:
                    comparable_players = projections_df[(projections_df['player_names'].isin(specific_replacements)) &
                        (projections_df['salary'] <= comp_salary_high + (salary_max - working_frame['salary'][row]))
                    ]
                else:
                    comparable_players = projections_df[
                        (projections_df['salary'] >= comp_salary_low) &
                        (projections_df['salary'] <= comp_salary_high + (salary_max - working_frame['salary'][row])) &
                        (projections_df['median'] >= comp_projection_low) &
                        (projections_df['position'].apply(lambda x: has_position_overlap(x, comp_player_position)))
                    ]

                if exposure_target == 0:
                    comparable_players = comparable_players[comparable_players['player_names'] != exposure_player]
                
                if remove_teams is not None:
                    remove_mask = comparable_players.apply(
                            lambda row: not any(team in list(row) for team in remove_teams), axis=1
                        )
                    comparable_players = comparable_players[remove_mask]

                # Get the current row data to check for existing players
                if specific_columns != []:
                    current_row_data = working_frame.iloc[row][specific_columns]
                else:
                    current_row_data = working_frame.iloc[row]
                
                # Filter out players that are already present in this row
                existing_players = set(current_row_data.values)
                try:
                    comparable_players = comparable_players[~comparable_players['player_names'].isin(existing_players)]
                    comparable_player_list = comparable_players['player_names'].tolist()
                except:
                    comparable_player_list = []

                print(comparable_player_list)
                print("^^^^ comparable player list")
                if comparable_player_list:
                    insert_player = random.choice(comparable_player_list)
                    # Find which column contains the exposure_player
                    if specific_columns != []:
                        row_data = working_frame.iloc[row][specific_columns]
                        working_columns = specific_columns
                    else:
                        row_data = working_frame.iloc[row]
                        working_columns = working_frame.columns
                    
                    print(working_columns)
                    for col in working_columns:
                        if row_data[col] == exposure_player:
                            # Get the replacement player's positions
                            replacement_player_positions = projections_df[projections_df['player_names'] == insert_player]['position'].iloc[0].split('/')
                            
                            # Check if the replacement player is eligible for this column
                            if type_var == 'Classic':
                                if check_position_eligibility(sport_var, col, replacement_player_positions):
                                    working_frame.at[row, col] = insert_player
                                    break
                            else:
                                working_frame.at[row, col] = insert_player
                                break
                    change_counter += 1
    else:
        for row in random_row_indices_replace:
            if change_counter < math.ceil(lineups_to_add):
                if specific_replacements != []:
                    comparable_players = projections_df[(projections_df['player_names'].isin(specific_replacements))
                    ]
                else:
                    if type_var == 'Showdown':
                        comparable_players = projections_df[
                            (projections_df['salary'] >= comp_salary_low) &
                            (projections_df['salary'] <= comp_salary_high + (salary_max - working_frame['salary'][row]))
                        ]
                    else:
                        comparable_players = projections_df[
                            (projections_df['salary'] >= comp_salary_low) &
                            (projections_df['salary'] <= comp_salary_high + (salary_max - working_frame['salary'][row])) &
                            (projections_df['position'].apply(lambda x: has_position_overlap(x, comp_player_position)))
                        ]
                    if sport_var in stacking_sports:
                        if working_frame.iloc[row]['Size'] == 5 and comp_team != working_frame.iloc[row]['Stack']:
                            remove_mask = comparable_players.apply(
                                lambda player_row: not any(team in list(player_row) for team in [working_frame.iloc[row]['Stack']]), axis=1
                            )
                            comparable_players = comparable_players[remove_mask]
                
                if remove_teams is not None:
                    remove_mask = comparable_players.apply(
                            lambda row: not any(team in list(row) for team in remove_teams), axis=1
                        )
                    comparable_players = comparable_players[remove_mask]

                comparable_players = comparable_players[comparable_players['player_names'] != exposure_player]

                # Create a list of comparable players
                comparable_player_list = comparable_players['player_names'].tolist()
                print(comp_salary_low)
                print(comp_salary_high)
                print(comparable_player_list)
                print("^^^^ comparable player list")
                if comparable_player_list:
                    # Find which column contains the exposure_player
                    if specific_columns != []:
                        row_data = working_frame.iloc[row][specific_columns]
                        working_columns = specific_columns
                    else:
                        row_data = working_frame.iloc[row]
                        working_columns = working_frame.columns
    
                    for col in working_columns:
                        if row_data[col] in comparable_player_list:
                            if working_frame.iloc[row]['salary'] - projections_df[projections_df['player_names'] == row_data[col]]['salary'].iloc[0] + projections_df[projections_df['player_names'] == exposure_player]['salary'].iloc[0] <= salary_max:
                                if type_var == 'Classic':
                                    replacement_player_positions = projections_df[projections_df['player_names'] == row_data[col]]['position'].iloc[0].split('/')
                                    exposure_player_positions = projections_df[projections_df['player_names'] == exposure_player]['position'].iloc[0].split('/')
                                    
                                    # Check if the replacement player is eligible for this column
                                
                                    if check_position_eligibility(sport_var, col, exposure_player_positions):
                                        working_frame.at[row, col] = exposure_player
                                        change_counter += 1
                                        break
                                else:
                                    working_frame.at[row, col] = exposure_player
                                    change_counter += 1
                                    break
                            else:
                                continue
    return working_frame