James McCool commited on
Commit
d5f1d98
·
1 Parent(s): f51c772

Refactor position eligibility checks in exposure_spread.py to simplify logic for player positions, enhancing readability and maintainability. Update reassess_dupes function in reassess_edge.py to streamline salary difference calculations for improved performance.

Browse files
global_func/exposure_spread.py CHANGED
@@ -34,8 +34,18 @@ def check_lol_position_eligibility(column_name, player_positions):
34
  def check_mlb_position_eligibility(column_name, player_positions):
35
  if any(pos in column_name for pos in ['P', 'SP', 'RP']):
36
  return any(pos in ['P', 'SP', 'RP'] for pos in player_positions)
37
- elif any(pos in column_name for pos in ['C', '1B', '2B', '3B', 'SS', 'OF']):
38
- return any(pos in ['C', '1B', '2B', '3B', 'SS', 'OF'] for pos in player_positions)
 
 
 
 
 
 
 
 
 
 
39
  return False
40
 
41
  def check_nfl_position_eligibility(column_name, player_positions):
 
34
  def check_mlb_position_eligibility(column_name, player_positions):
35
  if any(pos in column_name for pos in ['P', 'SP', 'RP']):
36
  return any(pos in ['P', 'SP', 'RP'] for pos in player_positions)
37
+ elif 'C' in column_name:
38
+ return 'C' in player_positions
39
+ elif '1B' in column_name:
40
+ return '1B' in player_positions
41
+ elif '2B' in column_name:
42
+ return '2B' in player_positions
43
+ elif '3B' in column_name:
44
+ return '3B' in player_positions
45
+ elif 'SS' in column_name:
46
+ return 'SS' in player_positions
47
+ elif 'OF' in column_name:
48
+ return 'OF' in player_positions
49
  return False
50
 
51
  def check_nfl_position_eligibility(column_name, player_positions):
global_func/reassess_edge.py CHANGED
@@ -10,12 +10,7 @@ import numpy as np
10
  import math
11
 
12
  def reassess_dupes(row: pd.Series, salary_max: int) -> float:
13
- if row['salary'] == salary_max:
14
- return math.ceil(row['Dupes'] + ((row['salary_diff'] / 100) * (row['own_diff'] / 100))).clip(lower=0)
15
- elif row['salary'] != salary_max:
16
- return math.ceil(row['Dupes'] + ((row['salary_diff'] / 100) * (row['own_diff'] / 100))).clip(lower=0)
17
- else:
18
- return row['Dupes']
19
 
20
  def reassess_edge(refactored_frame: pd.DataFrame, original_frame: pd.DataFrame, maps_dict: dict, site_var: str, type_var: str, Contest_Size: int, strength_var: str, sport_var: str, salary_max: int) -> pd.DataFrame:
21
  orig_df = original_frame.copy()
 
10
  import math
11
 
12
  def reassess_dupes(row: pd.Series, salary_max: int) -> float:
13
+ return math.ceil(row['Dupes'] + ((row['salary_diff'] / 100) + ((salary_max + (salary_max - row['salary'])) / 100)) * (1 - (row['own_diff'] / 100))).clip(lower=0)
 
 
 
 
 
14
 
15
  def reassess_edge(refactored_frame: pd.DataFrame, original_frame: pd.DataFrame, maps_dict: dict, site_var: str, type_var: str, Contest_Size: int, strength_var: str, sport_var: str, salary_max: int) -> pd.DataFrame:
16
  orig_df = original_frame.copy()