MikeMann's picture
Add new files
5064b4a
raw
history blame
6.4 kB
import os
import time
import re
import threading
from typing import List, Dict
import torch
import gradio as gr
from langchain_community.docstore import InMemoryDocstore
from langchain_community.document_loaders import TextLoader
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_community.vectorstores import FAISS
from langchain.docstore.document import Document as LangchainDocument
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores.utils import DistanceStrategy
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextIteratorStreamer, pipeline
class BSIChatbot:
def __init__(self, model_paths: Dict[str, str], docs_path: str):
self.embedding_model = None
self.llmpipeline = None
self.llmtokenizer = None
self.vectorstore = None
self.reranking_model = None
self.streamer = None
self.images = [None]
self.llm_path = model_paths['llm_path']
self.word_and_embed_model_path = model_paths['embed_model_path']
self.docs = docs_path
self.rerank_model_path = model_paths['rerank_model_path']
def initialize_embedding_model(self, rebuild_embeddings: bool):
raw_knowledge_base = []
# Initialize embedding model
self.embedding_model = HuggingFaceEmbeddings(
model_name=self.word_and_embed_model_path,
multi_process=True,
model_kwargs={"device": "cuda"},
encode_kwargs={"normalize_embeddings": True},
)
if rebuild_embeddings:
# Load documents
for doc in os.listdir(self.docs):
file_path = os.path.join(self.docs, doc)
if doc.endswith(".md") or doc.endswith(".txt"):
with open(file_path, 'r', encoding='utf-8' if doc.endswith(".md") else 'cp1252') as file:
content = file.read()
metadata = {"source": doc}
raw_knowledge_base.append(LangchainDocument(page_content=content, metadata=metadata))
# Split documents into chunks
tokenizer = AutoTokenizer.from_pretrained(self.word_and_embed_model_path)
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
tokenizer=tokenizer,
chunk_size=512,
chunk_overlap=0,
add_start_index=True,
strip_whitespace=True,
)
processed_docs = []
for doc in raw_knowledge_base:
chunks = text_splitter.split_documents([doc])
for chunk in chunks:
chunk.metadata.update({"source": doc.metadata['source']})
processed_docs.extend(chunks)
# Create and save vector store
self.vectorstore = FAISS.from_documents(processed_docs, self.embedding_model, distance_strategy=DistanceStrategy.COSINE)
self.vectorstore.save_local(os.path.join(self.docs, "_embeddings"))
else:
# Load existing vector store
self.vectorstore = FAISS.load_local(os.path.join(self.docs, "_embeddings"), self.embedding_model)
def retrieve_similar_embedding(self, query: str):
query = f"Instruct: Given a search query, retrieve the relevant passages that answer the query\nQuery:{query}"
return self.vectorstore.similarity_search(query=query, k=20)
def initialize_llm(self):
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
llm = AutoModelForCausalLM.from_pretrained(self.llm_path, quantization_config=bnb_config)
self.llmtokenizer = AutoTokenizer.from_pretrained(self.llm_path)
self.streamer = TextIteratorStreamer(self.llmtokenizer, skip_prompt=True)
self.llmpipeline = pipeline(
model=llm,
tokenizer=self.llmtokenizer,
task="text-generation",
do_sample=True,
temperature=0.7,
repetition_penalty=1.1,
return_full_text=False,
streamer=self.streamer,
max_new_tokens=500,
)
def rag_prompt(self, query: str, rerank: bool, history: List[Dict]):
retrieved_chunks = self.retrieve_similar_embedding(query)
retrieved_texts = [f"{chunk.metadata['source']}:\n{chunk.page_content}" for chunk in retrieved_chunks]
if rerank and self.reranking_model:
retrieved_texts = self.reranking_model.rerank(query, retrieved_texts, k=5)
context = "\n".join(retrieved_texts)
history_text = "\n".join([h['content'] for h in history])
final_prompt = f"""Context:
{context}
---
History:
{history_text}
---
Question: {query}"""
generation_thread = threading.Thread(target=self.llmpipeline, args=(final_prompt,))
generation_thread.start()
return self.streamer
def launch_interface(self):
with gr.Blocks() as demo:
chatbot = gr.Chatbot(type="messages")
msg = gr.Textbox()
clear = gr.Button("Clear")
reset = gr.Button("Reset")
def user_input(user_message, history):
return "", history + [{"role": "user", "content": user_message}]
def bot_response(history):
response = self.rag_prompt(history[-1]['content'], True, history)
history.append({"role": "assistant", "content": ""})
for token in response:
history[-1]['content'] += token
yield history
msg.submit(user_input, [msg, chatbot], [msg, chatbot]).then(bot_response, chatbot, chatbot)
clear.click(lambda: None, None, chatbot)
reset.click(lambda: [], outputs=chatbot)
demo.launch()
if __name__ == '__main__':
model_paths = {
'llm_path': 'meta-llama/Llama-3.2-3B-Instruct',
'embed_model_path': 'intfloat/multilingual-e5-large-instruct',
'rerank_model_path': 'domci/ColBERTv2-mmarco-de-0.1'
}
docs_path = '/docs'
bot = BSIChatbot(model_paths, docs_path)
bot.initialize_embedding_model(rebuild_embeddings=False)
bot.initialize_llm()
bot.launch_interface()