File size: 6,396 Bytes
5064b4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import time
import re
import threading
from typing import List, Dict

import torch
import gradio as gr
from langchain_community.docstore import InMemoryDocstore
from langchain_community.document_loaders import TextLoader
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_community.vectorstores import FAISS
from langchain.docstore.document import Document as LangchainDocument
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores.utils import DistanceStrategy
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextIteratorStreamer, pipeline

class BSIChatbot:
    def __init__(self, model_paths: Dict[str, str], docs_path: str):
        self.embedding_model = None
        self.llmpipeline = None
        self.llmtokenizer = None
        self.vectorstore = None
        self.reranking_model = None
        self.streamer = None
        self.images = [None]

        self.llm_path = model_paths['llm_path']
        self.word_and_embed_model_path = model_paths['embed_model_path']
        self.docs = docs_path
        self.rerank_model_path = model_paths['rerank_model_path']

    def initialize_embedding_model(self, rebuild_embeddings: bool):
        raw_knowledge_base = []

        # Initialize embedding model
        self.embedding_model = HuggingFaceEmbeddings(
            model_name=self.word_and_embed_model_path,
            multi_process=True,
            model_kwargs={"device": "cuda"},
            encode_kwargs={"normalize_embeddings": True},
        )

        if rebuild_embeddings:
            # Load documents
            for doc in os.listdir(self.docs):
                file_path = os.path.join(self.docs, doc)
                if doc.endswith(".md") or doc.endswith(".txt"):
                    with open(file_path, 'r', encoding='utf-8' if doc.endswith(".md") else 'cp1252') as file:
                        content = file.read()
                        metadata = {"source": doc}
                        raw_knowledge_base.append(LangchainDocument(page_content=content, metadata=metadata))

            # Split documents into chunks
            tokenizer = AutoTokenizer.from_pretrained(self.word_and_embed_model_path)
            text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
                tokenizer=tokenizer,
                chunk_size=512,
                chunk_overlap=0,
                add_start_index=True,
                strip_whitespace=True,
            )

            processed_docs = []
            for doc in raw_knowledge_base:
                chunks = text_splitter.split_documents([doc])
                for chunk in chunks:
                    chunk.metadata.update({"source": doc.metadata['source']})
                processed_docs.extend(chunks)

            # Create and save vector store
            self.vectorstore = FAISS.from_documents(processed_docs, self.embedding_model, distance_strategy=DistanceStrategy.COSINE)
            self.vectorstore.save_local(os.path.join(self.docs, "_embeddings"))
        else:
            # Load existing vector store
            self.vectorstore = FAISS.load_local(os.path.join(self.docs, "_embeddings"), self.embedding_model)

    def retrieve_similar_embedding(self, query: str):
        query = f"Instruct: Given a search query, retrieve the relevant passages that answer the query\nQuery:{query}"
        return self.vectorstore.similarity_search(query=query, k=20)

    def initialize_llm(self):
        bnb_config = BitsAndBytesConfig(load_in_8bit=True)
        llm = AutoModelForCausalLM.from_pretrained(self.llm_path, quantization_config=bnb_config)
        self.llmtokenizer = AutoTokenizer.from_pretrained(self.llm_path)
        self.streamer = TextIteratorStreamer(self.llmtokenizer, skip_prompt=True)
        self.llmpipeline = pipeline(
            model=llm,
            tokenizer=self.llmtokenizer,
            task="text-generation",
            do_sample=True,
            temperature=0.7,
            repetition_penalty=1.1,
            return_full_text=False,
            streamer=self.streamer,
            max_new_tokens=500,
        )

    def rag_prompt(self, query: str, rerank: bool, history: List[Dict]):
        retrieved_chunks = self.retrieve_similar_embedding(query)
        retrieved_texts = [f"{chunk.metadata['source']}:\n{chunk.page_content}" for chunk in retrieved_chunks]

        if rerank and self.reranking_model:
            retrieved_texts = self.reranking_model.rerank(query, retrieved_texts, k=5)

        context = "\n".join(retrieved_texts)
        history_text = "\n".join([h['content'] for h in history])
        final_prompt = f"""Context:
        {context}
        ---
        History:
        {history_text}
        ---
        Question: {query}"""

        generation_thread = threading.Thread(target=self.llmpipeline, args=(final_prompt,))
        generation_thread.start()

        return self.streamer

    def launch_interface(self):
        with gr.Blocks() as demo:
            chatbot = gr.Chatbot(type="messages")
            msg = gr.Textbox()
            clear = gr.Button("Clear")
            reset = gr.Button("Reset")

            def user_input(user_message, history):
                return "", history + [{"role": "user", "content": user_message}]

            def bot_response(history):
                response = self.rag_prompt(history[-1]['content'], True, history)
                history.append({"role": "assistant", "content": ""})
                for token in response:
                    history[-1]['content'] += token
                    yield history

            msg.submit(user_input, [msg, chatbot], [msg, chatbot]).then(bot_response, chatbot, chatbot)
            clear.click(lambda: None, None, chatbot)
            reset.click(lambda: [], outputs=chatbot)

        demo.launch()

if __name__ == '__main__':
    model_paths = {
        'llm_path': 'meta-llama/Llama-3.2-3B-Instruct',
        'embed_model_path': 'intfloat/multilingual-e5-large-instruct',
        'rerank_model_path': 'domci/ColBERTv2-mmarco-de-0.1'
    }
    docs_path = '/docs'

    bot = BSIChatbot(model_paths, docs_path)
    bot.initialize_embedding_model(rebuild_embeddings=False)
    bot.initialize_llm()
    bot.launch_interface()