File size: 7,027 Bytes
bb1b112 dbb4df0 9b322ba bb1b112 5064b4a dd57387 5064b4a 9b322ba 8d40ad1 9b322ba dbb4df0 9b322ba 8d40ad1 5064b4a 9b322ba 5064b4a 5b61faf 5064b4a dbb4df0 9b322ba 5064b4a 5b61faf 5064b4a 43b7ef1 46ba3d8 9b322ba dbb4df0 9b322ba 5064b4a dbb4df0 9b322ba 36b6ea5 5064b4a dbb4df0 9b322ba 5064b4a 9b322ba 5064b4a dbb4df0 9b322ba 6075ce5 5064b4a 9b322ba 5064b4a 9b322ba 5064b4a 590a9e2 5064b4a 9b322ba 5064b4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Disable CUDA initialization
os.environ["allow_dangerous_deserialization"] = "True"
import spaces
import asyncio
import sys
from typing import List, Dict
import torch
import gradio as gr
from langchain_community.docstore import InMemoryDocstore
from langchain_community.document_loaders import TextLoader
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.docstore.document import Document as LangchainDocument
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores.utils import DistanceStrategy
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
from huggingface_hub import login
# Environment setup
HF_KEY = os.getenv('Gated_Repo')
embedding_path = "/home/user/app/docs/_embeddings/index.faiss"
login(token=HF_KEY)
# Verify embedding file path
if not os.path.exists(embedding_path):
print("Embedding file not found!")
class BSIChatbot:
def __init__(self, model_paths: Dict[str, str], docs_path: str):
self.embedding_model = None
self.llmpipeline = None
self.llmtokenizer = None
self.vectorstore = None
self.streamer = None
self.llm_path = model_paths['llm_path']
self.word_and_embed_model_path = model_paths['embed_model_path']
self.docs = docs_path
@spaces.GPU
async def initialize_embedding_model(self, rebuild_embeddings: bool):
raw_knowledge_base = []
# Initialize embedding model
self.embedding_model = HuggingFaceEmbeddings(
model_name=self.word_and_embed_model_path,
multi_process=True,
model_kwargs={"device": "cuda"},
encode_kwargs={"normalize_embeddings": True},
)
if rebuild_embeddings:
# Load documents
for doc in os.listdir(self.docs):
file_path = os.path.join(self.docs, doc)
if doc.endswith(".md") or doc.endswith(".txt"):
with open(file_path, 'r', encoding='utf-8' if doc.endswith(".md") else 'cp1252') as file:
content = file.read()
metadata = {"source": doc}
raw_knowledge_base.append(LangchainDocument(page_content=content, metadata=metadata))
# Split documents into chunks
tokenizer = AutoTokenizer.from_pretrained(self.word_and_embed_model_path)
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
tokenizer=tokenizer,
chunk_size=512,
chunk_overlap=0,
add_start_index=True,
strip_whitespace=True,
)
processed_docs = []
for doc in raw_knowledge_base:
chunks = text_splitter.split_documents([doc])
for chunk in chunks:
chunk.metadata.update({"source": doc.metadata['source']})
processed_docs.extend(chunks)
# Create and save vector store
self.vectorstore = FAISS.from_documents(processed_docs, self.embedding_model, distance_strategy=DistanceStrategy.COSINE)
self.vectorstore.save_local(os.path.join(self.docs, "_embeddings"))
else:
# Load existing vector store
self.vectorstore = FAISS.load_local(os.path.join(self.docs, "_embeddings"), self.embedding_model, allow_dangerous_deserialization=True)
@spaces.GPU
async def retrieve_similar_embedding(self, query: str):
if self.vectorstore is None:
self.vectorstore = FAISS.load_local(os.path.join(self.docs, "_embeddings"), self.embedding_model,
allow_dangerous_deserialization=True)
query = f"Instruct: Given a search query, retrieve the relevant passages that answer the query\nQuery:{query}"
return self.vectorstore.similarity_search(query=query, k=20)
@spaces.GPU
async def initialize_llm(self):
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
llm = AutoModelForCausalLM.from_pretrained(self.llm_path, quantization_config=bnb_config)
self.llmtokenizer = AutoTokenizer.from_pretrained(self.llm_path)
self.llmpipeline = pipeline(
model=llm,
tokenizer=self.llmtokenizer,
task="text-generation",
do_sample=True,
temperature=0.7,
repetition_penalty=1.1,
return_full_text=False,
max_new_tokens=500,
)
@spaces.GPU
async def rag_prompt(self, query: str, rerank: bool, history: List[Dict]):
retrieved_chunks = await self.retrieve_similar_embedding(query)
retrieved_texts = [f"{chunk.metadata['source']}:\n{chunk.page_content}" for chunk in retrieved_chunks]
context = "\n".join(retrieved_texts)
history_text = "\n".join([h['content'] for h in history])
final_prompt = f"""Context:
{context}
---
History:
{history_text}
---
Question: {query}"""
response = await self._generate_response_async(final_prompt)
return response
@spaces.GPU
async def _generate_response_async(self, final_prompt: str):
loop = asyncio.get_event_loop()
tokens = await loop.run_in_executor(None, self.llmpipeline, final_prompt)
for token in tokens:
yield token
def launch_interface(self):
with gr.Blocks() as demo:
chatbot = gr.Chatbot(type="messages")
msg = gr.Textbox()
clear = gr.Button("Clear")
reset = gr.Button("Reset")
def user_input(user_message, history):
return "", history + [{"role": "user", "content": user_message}]
async def bot_response(history):
response_generator = self.rag_prompt(history[-1]['content'], True, history)
history.append({"role": "assistant", "content": ""})
async for token in response_generator:
history[-1]['content'] += token
yield history
msg.submit(user_input, [msg, chatbot], [msg, chatbot]).then(bot_response, chatbot, chatbot)
clear.click(lambda: None, None, chatbot)
reset.click(lambda: [], outputs=chatbot)
demo.launch()
if __name__ == '__main__':
model_paths = {
'llm_path': 'meta-llama/Llama-3.2-3B-Instruct',
'embed_model_path': 'intfloat/multilingual-e5-large-instruct',
}
docs_path = '/home/user/app/docs'
bot = BSIChatbot(model_paths, docs_path)
asyncio.run(bot.initialize_embedding_model(rebuild_embeddings=False))
asyncio.run(bot.initialize_llm())
bot.launch_interface()
|