MikeMann commited on
Commit
5b61faf
·
1 Parent(s): 64f706b

vectorstore

Browse files
Files changed (1) hide show
  1. app.py +10 -11
app.py CHANGED
@@ -34,13 +34,7 @@ login(token=HF_KEY)
34
 
35
  class BSIChatbot:
36
  def __init__(self, model_paths: Dict[str, str], docs_path: str):
37
- #self.embedding_model = None
38
- self.embedding_model = HuggingFaceEmbeddings(
39
- model_name=self.word_and_embed_model_path,
40
- multi_process=True,
41
- model_kwargs={"device": "cuda"},
42
- encode_kwargs={"normalize_embeddings": True},
43
- )
44
  self.llmpipeline = None
45
  self.llmtokenizer = None
46
  self.vectorstore = None
@@ -58,7 +52,12 @@ class BSIChatbot:
58
  raw_knowledge_base = []
59
 
60
  # Initialize embedding model
61
-
 
 
 
 
 
62
 
63
  if rebuild_embeddings:
64
  # Load documents
@@ -98,9 +97,9 @@ class BSIChatbot:
98
  @spaces.GPU
99
  def retrieve_similar_embedding(self, query: str):
100
  #lazy load
101
- if (self.vectorstore == None):
102
- self.vectorstore = FAISS.load_local(os.path.join(self.docs, "_embeddings"), self.embedding_model,
103
- allow_dangerous_deserialization=True)
104
  print("DBG: Vectorstore Status retriever:", self.vectorstore)
105
  query = f"Instruct: Given a search query, retrieve the relevant passages that answer the query\nQuery:{query}"
106
  return self.vectorstore.similarity_search(query=query, k=20)
 
34
 
35
  class BSIChatbot:
36
  def __init__(self, model_paths: Dict[str, str], docs_path: str):
37
+ self.embedding_model = None
 
 
 
 
 
 
38
  self.llmpipeline = None
39
  self.llmtokenizer = None
40
  self.vectorstore = None
 
52
  raw_knowledge_base = []
53
 
54
  # Initialize embedding model
55
+ self.embedding_model = HuggingFaceEmbeddings(
56
+ model_name=self.word_and_embed_model_path,
57
+ multi_process=True,
58
+ model_kwargs={"device": "cuda"},
59
+ encode_kwargs={"normalize_embeddings": True},
60
+ )
61
 
62
  if rebuild_embeddings:
63
  # Load documents
 
97
  @spaces.GPU
98
  def retrieve_similar_embedding(self, query: str):
99
  #lazy load
100
+ #if (self.vectorstore == None):
101
+ # self.vectorstore = FAISS.load_local(os.path.join(self.docs, "_embeddings"), self.embedding_model,
102
+ # allow_dangerous_deserialization=True)
103
  print("DBG: Vectorstore Status retriever:", self.vectorstore)
104
  query = f"Instruct: Given a search query, retrieve the relevant passages that answer the query\nQuery:{query}"
105
  return self.vectorstore.similarity_search(query=query, k=20)